Least squares based and gradient based iterative identification for Wiener nonlinear systems

Signal Processing - Tập 91 - Trang 1182-1189 - 2011
Dongqing Wang1, Feng Ding2
1College of Automation Engineering, Qingdao University, Qingdao 266071, PR China
2School of IoT Engineering, Jiangnan University, Wuxi 214122, PR China

Tài liệu tham khảo

Ding, 2005, Identification of Hammerstein nonlinear ARMAX systems, Automatica, 41, 1479, 10.1016/j.automatica.2005.03.026 Ding, 2007, Auxiliary model based least-squares identification methods for Hammerstein output-error systems, Systems & Control Letters, 56, 373, 10.1016/j.sysconle.2006.10.026 Umoh, 2010, An affine projection-based algorithm for identification of nonlinear Hammerstein systems, Signal Processing, 90, 2020, 10.1016/j.sigpro.2010.01.004 Wang, 2010, Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Computers & Mathematics with Applications, 59, 3092, 10.1016/j.camwa.2010.02.030 Wang, 2010, Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems, Mathematical and Computer Modelling, 52, 309, 10.1016/j.mcm.2010.03.002 Vörös, 2003, Modeling and identification of Wiener systems with two-segment nonlinearities, IEEE Transactions on Control Systems Technology, 11, 253, 10.1109/TCST.2003.809238 Vörös, 2007, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Systems & Control Letters, 56, 99, 10.1016/j.sysconle.2006.08.001 Aguirre, 2005, On the interpretation and practice of dynamical difference between Hammerstein and Wiener models, IEE Prooceedings of Control Theory and Applications, 152, 349, 10.1049/ip-cta:20045152 Hu, 2005, Strong consistence of recursive identification for Wiener systems, Automatica, 41, 1905, 10.1016/j.automatica.2005.06.006 Kozek, 2008, Identification of Wiener models using optimal local linear models, Simulation Modelling Practice and Theory, 16, 1055, 10.1016/j.simpat.2008.05.012 Figueroa, 2008, An approach for identification of uncertain Wiener systems, Mathematical and Computer Modelling, 48, 305, 10.1016/j.mcm.2007.09.012 Hagenblad, 2008, Maximum likelihood identification of Wiener models, Automatica, 44, 2697, 10.1016/j.automatica.2008.02.016 Ding, 2010, Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digital Signal Processing, 20, 664, 10.1016/j.dsp.2009.10.012 Liu, 2010, Least-squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data, Digital Signal Processing, 20, 1458, 10.1016/j.dsp.2010.01.004 Wang, 2010, Gradient-based iterative parameter estimation for Box-Jenkins systems, Computers & Mathematics with Applications, 60, 1200, 10.1016/j.camwa.2010.06.001 Kapetanios, 2003, A note on an iterative least-squares estimation method for ARMA and VARMA models, Economics Letters, 79, 305, 10.1016/S0165-1765(03)00005-3 Bai, 2006, Least squares solutions of bilinear equations, Systems & Control Letters, 55, 466, 10.1016/j.sysconle.2005.09.010 Ding, 2005, Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 315, 10.1016/j.automatica.2004.10.010 Ding, 2005, Hierarchical least squares identification methods for multivariable systems, IEEE Transactions on Automatic Control, 50, 397, 10.1109/TAC.2005.843856 Ding, 2005, Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE Transactions on Circuits and Systems—I: Regular Papers, 52, 1179, 10.1109/TCSI.2005.849144 D.Q. Wang, Y.Y. Chu, F. Ding, Identification methods for Wiener nonlinear systems based on the least squares and gradient iterations, in: 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, December 16–18, 2009, Shanghai, China, pp. 3632–3636. Ding, 2007, Performance analysis of multi-innovation gradient type identification methods, Automatica, 43, 1, 10.1016/j.automatica.2006.07.024 Ding, 2010, Several multi-innovation identification methods, Digital Signal Processing, 20, 1027, 10.1016/j.dsp.2009.10.030 Wang, 2010, Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems, Digital Signal Processing, 20, 750, 10.1016/j.dsp.2009.09.002 Ding, 2009, Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal Processing, 89, 1883, 10.1016/j.sigpro.2009.03.020 Han, 2009, Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital Signal Processing, 19, 545, 10.1016/j.dsp.2008.12.002 Zhang, 2009, Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems & Control Letters, 58, 69, 10.1016/j.sysconle.2008.08.005 Ding, 2010, Multi-innovation least squares identification for linear and pseudo-linear regression models, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40, 767, 10.1109/TSMCB.2009.2028871 Xie, 2010, Modeling and identification for non-uniformly periodically sampled-data systems, IET Control Theory & Applications, 4, 784, 10.1049/iet-cta.2009.0064 Bai, 1998, An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems, Automatica, 34, 333, 10.1016/S0005-1098(97)00198-2 Wang, 2008, Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMXA Systems, Computers and Mathematics with Applications, 56, 3157, 10.1016/j.camwa.2008.07.015 Liu, 2007, Iterative identification of Hammerstein systems, Automatica, 43, 346, 10.1016/j.automatica.2006.09.004 Cerone, 2003, Parameter bounds for discrete-time Hammerstein models with bounded output errors, IEEE Transactions on Automatic Control, 48, 1855, 10.1109/TAC.2003.817945 Ding, 2010, Least squares parameter estimation with irregularly missing data, International Journal of Adaptive Control and Signal Processing, 24, 540 Ding, 2009, Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica, 45, 324, 10.1016/j.automatica.2008.08.007 Ding, 2010, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE Transaction on Automatic Control, 55, 1976, 10.1109/TAC.2010.2050713 Liu, 2009, An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 223, 445 Ding, 2008, Parameter identification and intersample output estimation for dual-rate systems, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 38, 966, 10.1109/TSMCA.2008.923030 Ding, 2010, A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems, Digital Signal Processing, 20, 1238, 10.1016/j.dsp.2009.10.023 Wang, 2010, Input–output data filtering based recursive least squares identification for CARARMA systems, Digital Signal Processing, 20, 991, 10.1016/j.dsp.2009.12.006 F. Ding, P.X. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems, Digital Signal Processing 21 (2) (2011), doi:10.1016/j.dsp.2010.06.006