Evaluation of historical CMIP6 model simulations and future projections of temperature over the Pan-Third Pole region

Springer Science and Business Media LLC - Tập 29 - Trang 26214-26229 - 2021
Xuewei Fan1, Qingyun Duan1,2, Chenwei Shen1, Yi Wu1, Chang Xing1
1State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
2College of Hydrology and Water Resources, Hohai University, Nanjing, China

Tóm tắt

The Pan-Third Pole (PTP) region, which encompasses the Eurasian highlands and their surroundings, has experienced unprecedented, accelerated warming during the past decades. This study evaluates the performance of historical simulation runs of the Coupled Model Intercomparison Project (CMIP6) in capturing spatial patterns and temporal variations observed over the PTP region for mean and extreme temperatures. In addition, projected changes in temperatures under four Shared Socioeconomic Pathway (SSP) scenarios (SSP1‐2.6, SSP2‐4.5, SSP3-7.0, and SSP5‐8.5) are also reported. Four indices were used to characterize changes in temperature extremes: the annual maximum value of daily maximum temperature (TXx), the annual minimum value of daily minimum temperature (TNn), and indices for the percentage of warm days (TX90p) and warm nights (TN90p). Results indicate that most CMIP6 models generally capture the characteristics of the observed mean and extreme temperatures over the PTP region, but there still are slight cold biases in the Tibetan Plateau. Future changes of mean and extreme temperatures demonstrate that a strong increase will occur for the entire PTP region during the twenty-first century under all four SSP scenarios. Between 2015 and 2099, ensemble area-averaged annual mean temperatures are projected to increase by 1.24 °C/100 year, 3.28 °C/100 year, 5.57 °C/100 year, and 7.40 °C/100 year for the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. For TXx and TNn, the most intense warming is projected in Central Asia. The greatest number of projected TX90p and TN90p will occur in the Southeast Asia and Tibetan Plateau, respectively.

Tài liệu tham khảo

Ahmed K, Sachindra DA, Shahid S, Iqbal Z, Nawaz N, Khan N (2020) Multi-Model Ensemble Predictions of Precipitation and Temperature Using Machine Learning Algorithms. Atmos Res 236:104806. https://doi.org/10.1016/j.atmosres.2019.104806 Annan JD, Hargreaves JC (2011) Understanding the CMIP3 multimodel ensemble. J Clim 24(16):4529–4538. https://doi.org/10.1175/2011JCLI3873.1 Bannister D, Herzog M, Graf H-F, Hosking JS, Short CA (2017) An assessment of recent and future temperature change over the Sichuan basin, China, using CMIP5 climate models. J Clim 30(17):6701–6722. https://doi.org/10.1175/JCLI-D-16-0536.1 Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W (2018) Heatwave and elderly mortality: an evaluation of death burden and health costs considering short-term mortality displacement. Environ Int 115:334–342. https://doi.org/10.1016/j.envint.2018.03.041 Deng H, Pepin NC, Chen Y (2017) Changes of snowfall under warming in the Tibetan Plateau. J Geophys Res-Atmos 122(14):7323–7341. https://doi.org/10.1002/2017JD026524 Dong T-Y, Dong W-J, Guo Y, Chou J-M, Yang S-L, Tian D, Yan D-D (2018) Future temperature changes over the critical Belt and Road region based on CMIP5 models. Adv Clim Chang Res 9(1):57–65. https://doi.org/10.1016/j.accre.2018.01.003 Dunn RJH, Alexander LV, Donat MG et al (2020) Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J Geophys Res-Atmos 125(16):e2019JD032263. https://doi.org/10.1029/2019JD032263 Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 Eyring V, Cox PM, Flato GM et al (2019) Taking climate model evaluation to the next level. Nat Clim Change 9(2):102–110. https://doi.org/10.1038/s41558-018-0355-y Fan X, Duan Q, Shen C, Wu Y, Xing C (2020a) Global surface air temperatures in CMIP6: historical performance and future changes. Environ Res Lett 15(10):104056. https://doi.org/10.1088/1748-9326/abb051 Fan XW, Miao CY, Duan QY, Shen CW, Wu Y (2020) The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J Geophys Res-Atmos 125(18):e2020JD033031. https://doi.org/10.1029/2020JD033031 Feng S, Hu Q, Huang W, Ho C-H, Li R, Tang Z (2014) Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global Planet Change 112:41–52. https://doi.org/10.1016/j.gloplacha.2013.11.002 Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, Kriegler E, van Vuuren DP (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12:1443–1475. https://doi.org/10.5194/gmd-12-1443-2019 Gou J, Miao C, Duan Q, Tang Q, Di Z, Liao W, Wu J, Zhou R (2020) Sensitivity analysis-based automatic parameter calibration of the VIC model for streamflow simulations Over China. Water Resour Res 56(1):e2019WR025968. https://doi.org/10.1029/2019WR025968 Gou JJ, Miao CY, Samaniego L, Xiao M, Wu JW, Guo XY (2021) CNRD v1.0: a high-quality natural runoff dataset for hydrological and climate studies in China. Bull Amer Meteorol Soc 102(5):E929–E947. https://doi.org/10.1175/BAMS-D-20-0094.1 Grose MR, Narsey S, Delage FP et al (2020) Insights from CMIP6 for Australia’s future climate. Earth’s Future 8(5):e2019EF001469. https://doi.org/10.1029/2019EF001469 Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):109. https://doi.org/10.1038/s41597-020-0453-3 Jia K, Ruan Y, Yang Y, You Z (2019) Assessment of CMIP5 GCM simulation performance for temperature projection in the Tibetan Plateau. Earth Space Sci 6(12):2362–2378. https://doi.org/10.1029/2019EA000962 Kamworapan S, Surussavadee C (2019) Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv Meteorol 2019:1067365. https://doi.org/10.1155/2019/1067365 Kang S, Zhang Q, Qian Y (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev 6(4):796–809. https://doi.org/10.1093/nsr/nwz031 Kim Y-H, Min S-K, Zhang X, Sillmann J, Sandstad M (2020) Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim Extreme 29:100269. https://doi.org/10.1016/j.wace.2020.100269 Kong D, Miao C, Li J, Zheng H (2022) Full-stream erosion in the lower Yellow River: Feasibility, sustainability and opportunity. Sci Total Environ 807:150810. https://doi.org/10.1016/j.scitotenv.2021.150810 Li D, Zhou T, Zou L, Zhang W, Zhang L (2018) Extreme high-temperature events over east Asia in 1.5°C and 2°C warmer futures: analysis of NCAR CESM low-warming experiments. Geophys Res Lett 45(3):1541–1550. https://doi.org/10.1002/2017GL076753 Li L, Yao N, Li Y, Liu DL, Wang B, Ayantobo OO (2019) Future projections of extreme temperature events in different sub-regions of China. Atmos Res 217:150–164. https://doi.org/10.1016/j.atmosres.2018.10.019 Li Y, Yan D, Peng H, Xiao S (2021) Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos Res 253:105406. https://doi.org/10.1016/j.atmosres.2020.105406 Liu B, Martre P, Ewert F et al (2019) Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Glob Change Biol 25(4):1428–1444. https://doi.org/10.1111/gcb.14542 Liu X, Liu Y, Liu Z, Chen Z (2021) Impacts of climatic warming on cropping system borders of China and potential adaptation strategies for regional agriculture development. Sci Total Environ 755:142415. https://doi.org/10.1016/j.scitotenv.2020.142415 Lovino MA, Pierrestegui MJ, Müller OV, Berbery EH, Müller GV, Pasten M (2021) Evaluation of historical CMIP6 model simulations and future projections of temperature and precipitation in Paraguay. Clim Change 164(3):46. https://doi.org/10.1007/s10584-021-03012-4 Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Amer Meteorol Soc 81(2): 313–318. Retrieved August 30 2021, from https://www.jstor.org/stable/26215108 Miao C, Duan Q, Sun Q, Lei X, Li H (2019) Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environ Res Lett 14(2):025004. https://doi.org/10.1088/1748-9326/aaf306 Miao C, Gou J, Fu B, Tang Q et al (2021) High-quality reconstruction of China’s natural streamflow. Sci Bull (online). https://doi.org/10.1016/j.scib.2021.09.022 Ohmura A (2012) Enhanced temperature variability in high-altitude climate change. Theor Appl Climatol 110:499–508. https://doi.org/10.1007/s00704-012-0687-x O’Neill BC, Tebaldi C, van Vuuren DP et al (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482. https://doi.org/10.5194/gmd-9-3461-2016 O’Neill BC, Carter TR, Ebi K (2020) Achievements and needs for the climate change scenario framework. Nat Clim Change 10(12):1074–1084. https://doi.org/10.1038/s41558-020-00952-0 O’Neill BC, Kriegler E, Ebi KL et al (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ Chang 42:169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004 Ongoma V, Chen H, Gao C (2018) Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. Int J Climatol 38(3):1375–1392. https://doi.org/10.1002/joc.5252 Osborn TJ, Jones PD, Lister DH, Morice CP, Simpson IR, Winn JP, Hogan E, Harris IC (2021) Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 Data Set. J Geophys Res-Atmos 126(2):e2019JD032352. https://doi.org/10.1029/2019JD032352 Pepin N, Deng H, Zhang H, Zhang F, Kang S, Yao T (2019) An examination of temperature trends at high elevations across the Tibetan Plateau: the use of MODIS LST to understand patterns of elevation-dependent warming. J Geophys Res-Atmos 124(11):5738–5756. https://doi.org/10.1029/2018JD029798 Riahi K, van Vuuren DP, Kriegler E et al (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Chang 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 Seneviratne SI, Wartenburger R, Guillod BP (2018) Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philos T R Soc A 376(2119):20160450. https://doi.org/10.1098/rsta.2016.0450 Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res-Atmos 118(4):1716–1733. https://doi.org/10.1002/jgrd.50203 Srivastava A, Grotjahn R, Ullrich PA (2020) Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather Clim Extreme 29:100268. https://doi.org/10.1016/j.wace.2020.100268 Sun QH, Miao CY, AghaKouchak A, Mallakpour I, Ji DY, Duan QY (2020) Possible Increased frequency of ENSO-related dry and wet conditions over some major watersheds in a warming climate. Bull Amer Meteorol Soc 101(4):E409–E426. https://doi.org/10.1175/BAMS-D-18-0258.1 Sun Q, Miao C, Hanel M, Borthwick AGL, Duan Q, Ji D, Li H (2019) Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ Int 128:125–136. https://doi.org/10.1016/j.envint.2019.04.025 Sun Q, Miao C, Qiao Y, Duan Q (2017) The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim Dyn 49(11):4281–4292. https://doi.org/10.1007/s00382-017-3586-0 Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmos 106(D7):7183–7192 Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc 93(4):485–498. https://doi.org/10.1029/2000JD900719 Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018) Future warming increases probability of globally synchronized maize production shocks. P Natl Acad Sci Usa 115(26):6644. https://doi.org/10.1073/pnas.1718031115 Wang T, Chen Y, Gan Z, Han Y, Li J, Huang J (2020) Assessment of dominating aerosol properties and their long-term trend in the Pan-Third Pole region: a study with 10-year multi-sensor measurements. Atmos Environ 239:117738. https://doi.org/10.1016/j.atmosenv.2020.117738 Wehner MF (2020) Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: part 2, projections of future change. Weather Clim Extreme 30:100284. https://doi.org/10.1016/j.wace.2020.100283 Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91. https://doi.org/10.1016/j.gloplacha.2013.12.001 Yao T, Chen F, Cui P, Ma Y, Xu B, Zhu L, Zhang F, Wang W, Ai L, Yang X (2017) From Tibetan plateau to third Pole and pan-third Pole. Bull Chin Acad Sci 32:924–931. https://doi.org/10.16418/j.issn.1000-3045.2017.09.001 (in Chinese) Yao T, Xue Y, Chen D (2019) Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull Amer Meteorol Soc 100(3):423–444. https://doi.org/10.1175/BAMS-D-17-0057.1 Yin H, Sun Y, Donat MG (2019) Changes in temperature extremes on the Tibetan Plateau and their attribution. Environ Res Lett 14(12):124015. https://doi.org/10.1088/1748-9326/ab503c You Q, Jiang Z, Wang D, Pepin N, Kang S (2018) Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim Dyn 51(1):355–369. https://doi.org/10.1007/s00382-017-3928-y You Q, Zhang Y, Xie X, Wu F (2019) Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °C. Clim Dyn 53(3):2047–2060. https://doi.org/10.1007/s00382-019-04775-4 Zheng HY, Miao CY, Jiao JY, Borthwick AGL (2021) Complex relationships between water discharge and sediment concentration across the Loess Plateau. China J Hydrol 596:126078. https://doi.org/10.1016/j.jhydrol.2021.126078 Zhou B, Wen QH, Xu Y, Song L, Zhang X (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27(17):6591–6611. https://doi.org/10.1175/JCLI-D-13-00761.1 Zhu Y-Y, Yang S (2020) Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv Clim Chang Res 11(3):239–251. https://doi.org/10.1016/j.accre.2020.08.001