Single-nucleotide polymorphism identification and genotyping in Camelina sativa

Molecular Breeding - Tập 35 - Trang 1-13 - 2015
Ravinder Singh1,2, Venkatesh Bollina1, Erin E. Higgins1, Wayne E. Clarke1, Christina Eynck1, Christine Sidebottom3, Richard Gugel4, Rod Snowdon5, Isobel A. P. Parkin1
1Agriculture and Agri-Food Canada, Saskatoon, Canada
2School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
3National Research Council Canada, Saskatoon, Canada
4Plant Gene Resources Canada, Saskatoon, Canada
5Department of Plant Breeding, Justus Liebig University, Giessen, Germany

Tóm tắt

Camelina sativa, a largely relict crop, has recently returned to interest due to its potential as an industrial oilseed. Molecular markers are key tools that will allow C. sativa to benefit from modern breeding approaches. Two complementary methodologies, capture of 3′ cDNA tags and genomic reduced-representation libraries, both of which exploited second generation sequencing platforms, were used to develop a low density (768) Illumina GoldenGate single nucleotide polymorphism (SNP) array. The array allowed 533 SNP loci to be genetically mapped in a recombinant inbred population of C. sativa. Alignment of the SNP loci to the C. sativa genome identified the underlying sequenced regions that would delimit potential candidate genes in any mapping project. In addition, the SNP array was used to assess genetic variation among a collection of 175 accessions of C. sativa, identifying two sub-populations, yet low overall gene diversity. The SNP loci will provide useful tools for future crop improvement of C. sativa.

Tài liệu tham khảo

Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23(11):2142–2160. doi:10.1093/molbev/msl087 Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572. doi:10.1098/rstb.2007.2170 Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribiere N, Trotoux G, Blanchard P, Riviere N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics 14:120. doi:10.1186/1471-2164-14-120 Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23(1):40–69. doi:10.1111/mec.12581 Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x Eveland AL, McCarty DR, Koch KE (2008) Transcript profiling by 3′-untranslated region sequencing resolves expression of gene families. Plant Physiol 146(1):32–44. doi:10.1104/pp.107.108597 Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x Eynck C, Falk KC (2013) Camelina (Camelina sativa). In: Singh BP (ed) Biofuel crops: production, physiology and genetics. CABI, pp 369–391 Eynck C, Seguin-Swartz G, Clarke WE, Parkin IA (2012) Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol 13(8):887–899. doi:10.1111/j.1364-3703.2012.00798.x Francis A, Warwick SI (2009) The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Can J Plant Sci 89(4):791–810. doi:10.4141/cjps08185 Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12(2):211–217. doi:10.1016/j.pbi.2008.12.009 Gehringer A, Friedt W, Luhs W, Snowdon RJ (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49(12):1555–1563. doi:10.1139/g06-117 Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C (2010) Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53(7):558–567. doi:10.1139/g10-034 Gugel RK, Falk KC (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86(4):1047–1058. doi:10.4141/p04-081 Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233. doi:10.1186/1471-2229-10-233 Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806. doi:10.1093/bioinformatics/btm233 Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IAP (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706. doi:10.1038/ncomms4706 Kent WJ (2002) BLAT: the BLAST-like alignment tool. Genome Res 12(4):656–664. doi:10.1101/gr.229202 Koepke T, Schaeffer S, Krishnan V, Jiwan D, Harper A, Whiting M, Oraguzie N, Dhingra A (2012) Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3′UTR sequencing. BMC Genomics 13(1):18 Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181. doi:10.1016/0888-7543(87)90010-3 Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129. doi:10.1093/bioinformatics/bti282 Manca A, Pecchia P, Mapelli S, Masella P, Galasso I (2013) Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits. Genet Resour Crop Evol 60(4):1223–1236. doi:10.1007/s10722-012-9913-8 Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325 Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, Nam J-W, Jaworski JG, Lu C, Scheffler BE, Mockaitis K, Cahoon EB (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11(6):759–769. doi:10.1111/pbi.12068 Parkin IA, Clarke WE, Sidebottom C, Zhang W, Robinson SJ, Links MG, Karcz S, Higgins EE, Fobert P, Sharpe AG (2010) Towards unambiguous transcript mapping in the allotetraploid Brassica napus. Genome 53(11):929–938. doi:10.1139/G10-053 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959 Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138. doi:10.1046/j.1471-8286.2003.00566.x Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11(11):535–542. doi:10.1016/j.tplants.2006.09.002 Séguin-Swartz G, Eynck C, Gugel R, Strelkov S, Olivier C, Li J, Klein-Gebbinck H, Borhan H, Caldwell C, Falk K (2009) Diseases of Camelina sativa (false flax). Can J Plant Pathol 31:375–386 Sharpe AG, Parkin IA, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38(6):1112–1121 Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A, Bett KE (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192. doi:10.1186/1471-2164-14-192 Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. TAG Theor Appl Genet Theoretische und angewandte Genetik 120(7):1289–1299. doi:10.1007/s00122-009-1256-2 Vollmann J, Steinkellner S, Glauninger J (2001) Variation in resistance of Camelina (Camelina sativa [L.] Crtz.) to downy mildew (Peronospora camelinae Gaum.). J Phytopathol 149:129–133 Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005) Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed 124(5):446–453. doi:10.1111/j.1439-0523.2005.01134.x Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crops Prod 26(3):270–277. doi:10.1016/j.indcrop.2007.03.017 Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi:10.1093/jhered/93.1.77 Young AL, Abaan HO, Zerbino D, Mullikin JC, Birney E, Margulies EH (2010) A new strategy for genome assembly using short sequence reads and reduced representation libraries. Genome Res 20(2):249–256. doi:10.1101/gr.097956.109