Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot

Journal of Hazardous Materials - Tập 241 - Trang 55-62 - 2012
Premysl Landa1, Radomira Vankova2, Jana Andrlova1,3, Jan Hodek4, Petr Marsik1, Helena Storchova5, Jason C. White6, Tomas Vanek1
1Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 – Lysolaje, Czech Republic
2Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 – Lysolaje, Czech Republic
3Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, 165 21 Prague 6 – Suchdol, Czech Republic
4Department of Molecular Biology, Crop Research Institute, v.v.i., 161 06 Praha 6 – Ruzyně, Czech Republic
5Plant Reproduction Laboratory, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 – Lysolaje, Czech Republic
6Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06512, USA

Tài liệu tham khảo

Nowack, 2007, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut., 150, 5, 10.1016/j.envpol.2007.06.006 Navarro, 2008, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology, 17, 372, 10.1007/s10646-008-0214-0 Lei, 2008, Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation, Biol. Trace Elem. Res., 121, 69, 10.1007/s12011-007-8028-0 Hong, 2005, Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach, Biol. Trace Elem. Res., 105, 269, 10.1385/BTER:105:1-3:269 Yang, 2006, Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach, Biol. Trace Elem. Res., 110, 179, 10.1385/BTER:110:2:179 Khodakovskaya, 2009, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 3, 3221, 10.1021/nn900887m Asli, 2009, Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport, Plant Cell Environ., 32, 577, 10.1111/j.1365-3040.2009.01952.x Lopez-Moreno, 2010, X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species, J. Agric. Food Chem., 58, 3689, 10.1021/jf904472e Kumari, 2009, Genotoxicity of silver nanoparticles in Allium cepa, Sci. Total Environ., 407, 5243, 10.1016/j.scitotenv.2009.06.024 Lin, 2009, Uptake, translocation, and transmission of carbon nanomaterials in rice plants, Small, 5, 1128 Lin, 2008, Root uptake and phytotoxicity of ZnO nanoparticles, Environ. Sci. Technol., 42, 5580, 10.1021/es800422x Khodakovskaya, 2011, Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions, Proc. Natl. Acad. Sci. U. S. A., 108, 1028, 10.1073/pnas.1008856108 Shen, 2010, Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes, Am. J. Bot., 97, 1602, 10.3732/ajb.1000073 Lee, 2010, Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana, Environ. Toxicol. Chem., 29, 669, 10.1002/etc.58 Lin, 2007, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016 Kittelson, 1998, Engines and nanoparticles: a review, J. Aerosol Sci., 29, 575, 10.1016/S0021-8502(97)10037-4 Utsunomiya, 2002, Uraninite and fullerene in atmospheric particulates, Environ. Sci. Technol., 36, 4943, 10.1021/es025872a Heymann, 2003, Terrestrial and extraterrestrial fullerenes, Fuller. Nanotub. Carbon Nanostruct., 11, 333, 10.1081/FST-120025855 Murashige, 1962, A revised medium for rapid growth and bioassay with tobacco tissue cultures, Physiol. Plant., 15, 473, 10.1111/j.1399-3054.1962.tb08052.x Kratschmer, 1990, Solid C60: a new form of carbon, Nature, 347, 354, 10.1038/347354a0 Saeed, 2003, TM4: a free, open-source system for microarray data management and analysis, Biotechniques, 34, 10.2144/03342mt01 Landa, 2010, Transferases and transporters mediate the detoxification and capacity to tolerate trinitrotoluene in Arabidopsis, Funct. Integr. Genomics, 10, 547, 10.1007/s10142-010-0176-1 Provart, 2003, A browser-based functional classification SuperViewer for Arabidopsis genomics, Curr. Comput. Mol. Biol., 271 Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397 Cuypers, 2001, The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris, Plant Physiol. Biochem., 39, 657, 10.1016/S0981-9428(01)01276-1 Swarbreck, 2008, The Arabidopsis Information Resource (TAIR): gene structure and function annotation, Nucleic Acids Res., 36, D1009, 10.1093/nar/gkm965 Liu, 2010, Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level, ACS Nano, 4, 5743, 10.1021/nn101430g Gao, 2006, Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach-inducing complex of rubisco–rubisco activase, Biol. Trace Elem. Res., 111, 239, 10.1385/BTER:111:1:239 Ze, 2011, The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana, Biol. Trace Elem. Res., 143, 1131, 10.1007/s12011-010-8901-0 Rajeevan, 2001, Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR, J. Mol. Diagn., 3, 26, 10.1016/S1525-1578(10)60646-0