Shaping the gradients driving phoretic micro-swimmers: influence of swimming speed, budget of carbonic acid and environment

The European Physical Journal E - Tập 44 - Trang 1-17 - 2021
Nadir Möller1,2, Benno Liebchen3, Thomas Palberg1
1Institute of Condensed Matter Physics, Johannes Gutenberg Universität, Mainz, Germany
2Max Planck Graduade Center, Institute of Physics, Johannes Gutenberg Universität, Mainz, Germany
3Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany

Tóm tắt

pH gradient-driven modular micro-swimmers are investigated as a model for a large variety of quasi-two-dimensional chemi-phoretic self-propelled entities. Using three-channel micro-photometry, we obtain a precise large field mapping of pH at a spatial resolution of a few microns and a pH resolution of $$\sim 0.02~\hbox {pH}$$ units for swimmers of different velocities propelling on two differently charged substrates. We model our results in terms of solutions of the three-dimensional advection–diffusion equation for a 1:1 electrolyte, i.e. carbonic acid, which is produced by ion exchange and consumed by equilibration with dissolved $$\hbox {CO}_{2}$$ . We demonstrate the dependence of gradient shape and steepness on swimmer speed, diffusivity of chemicals, as well as the fuel budget. Moreover, we experimentally observe a subtle, but significant feedback of the swimmer’s immediate environment in terms of a substrate charge-mediated solvent convection. We discuss our findings in view of different recent results from other micro-fluidic or active matter investigations. We anticipate that they are relevant for quantitative modelling and targeted applications of diffusio-phoretic flows in general and artificial micro-swimmers in particular.

Tài liệu tham khảo

E.M. Purcell, Am. J. Phys. 45, 3–11 (1977). https://doi.org/10.1119/1.10903 J.L. Anderson, Ann. Rev. Fluid Mech. 21, 61–99 (1989). https://doi.org/10.1146/annurev.fl.21.010189.000425 Á.V. Delgado, F. Carrique, R. Roa, E. Ruiz-Reina, Curr. Opin. Colloid Interface Sci. 24, 32–43 (2016). https://doi.org/10.1063/5.0010692 D. Botin, F. Carrique, E. Ruiz-Reina, T. Palberg, J. Chem Phys. 152, 244902 (2020). https://doi.org/10.1063/5.0010692 A. Würger, Rep. Prog. Phys. 73, 126601 (2010). https://doi.org/10.1088/0034-4885/73/12/126601 F.M. Weinert, C.B. Mast, D. Braun, Phys. Chem. Chem. Phys. 13, 9918–9928 (2011). https://doi.org/10.1039/C0CP02359K H. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010). https://doi.org/10.1103/PhysRevLett.105.268302 J.L. Anderson, D.C. Prieve, Sep. Purific. Rev. 13, 67–103 (1984). https://doi.org/10.1080/03602548408068407 D. Velegol, A. Garg, R. Guha, A. Kar, M. Kumar, Soft Matter 12, 4686–4703 (2016). https://doi.org/10.1039/C6SM00052E P.O. Staffeld, J.A. Quinn, J. Colloid Interface Sci. 13, 69–87 (1989). https://doi.org/10.1016/0021-9797(89)90079-9 J. Palacci, B. Abécassis, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 10, 138302 (2010). https://doi.org/10.1103/PhysRevLett.104.138302 J. Palacci, B. Abécassis, C. Cottin-Bizonne, C. Ybert, L. Bocquet, 980–994 (2010). https://doi.org/10.1039/C1SM06395B T.-Y. Chang, D. Velegol, J. Colloid Interface Sci. 424, 120–123 (2014). https://doi.org/10.1016/j.jcis.2014.03.003 R. Niu, T. Palberg, Soft Matter 14, 3435–3442 (2018). https://doi.org/10.1039/C8SM00256H S. Battat, J.T. Ault, S. Khodaparast, H.A. Stone, Soft Matter 15, 3879–3885 (2019). https://doi.org/10.1039/C9SM00427K M.J. Esplandiu, D. Reguera, J. Fraxeidas, Soft Matter 16, 3717–3726 (2020). https://doi.org/10.1039/D0SM00170H J.M. Schurr, B.S. Fujimoto, L. Huynh, D.T. Chiu, J. Phys. Chem. B 117, 7626–7652 (2013). https://doi.org/10.1021/jp302587d H. Stark, Acc. Chem. Res. 51, 2681 (2018). https://doi.org/10.1021/acs.accounts.8b00259 U.B. Kaub, L. Alvarez, Eur. Phys. J. Spec. Top. 225, 2119–2139 (2016). https://doi.org/10.1140/epjst/e2016-60097-1 D.P. Singh, U. Choudhury, P. Fischer, A.G. Mark, Adv. Mater. 29, 1701328 (2017). https://doi.org/10.1002/adma.201701328 A. Aubret, M. Youssef, S. Sacanna, J. Palacci, Nat. Phys. 14, 1114–1118 (2018). https://doi.org/10.1038/s41567-018-0227-4 T. Speck, Soft Matter 16, 2652–2663 (2020). https://doi.org/10.1039/D0SM00176G S. Heckel, J. Grauer, M. Semmler, T. Gemming, H. Löwen, B. Liebchen, J. Simmchen, Langmuir (2020). https://doi.org/10.1021/acs.langmuir.0c01568 J.L. Moran, P.M. Wheat, J.D. Posner, Phys. Rev. E 81, 065302(R) (2010). https://doi.org/10.1103/PhysRevE.81.065302 A. Reinmüller, H.J. Schöpe, T. Palberg, Langmuir 29, 1738–1742 (2013). https://doi.org/10.1021/la3046466 W. Duan, W. Wang, S. Das, V. Yadav, T.E. Mallouk, A. Sen, Annu. Rev. Anal. Chem. 8, 311–333 (2015). https://doi.org/10.1146/annurev-anchem-071114-040125 J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511–540 (2017). https://doi.org/10.1146/annurev-fluid-122414-034456 C. Kurzthaler, C. Devailly, J. Arlt, T. Franosch, W.C.K. Poon, V.A. Martinez, A.T. Brown, Phys. Rev. Lett. 121, 078001 (2018). https://doi.org/10.1103/PhysRevLett.121.078001 C. Zhou, H.P. Zhang, J. Tang, W. Wang, Langmuir 34, 3289–3295 (2018). https://doi.org/10.1021/acs.langmuir.7b04301 R. Niu, A. Fischer, T. Palberg, T. Speck, ACS Nano 12, 10932–10938 (2018). https://doi.org/10.1021/acsnano.8b04221 X. Chen, C. Zhou, W. Wang, Chem. Asian J. 14, 2388–2405 (2019). https://doi.org/10.1002/asia.201900377 T. Speck, Phys. Rev. E 99, 060602(R) (2019). https://doi.org/10.1103/PhysRevE.99.060602 T. Speck, J. Tallieur, J. Palacci, New J. Phys. 22, 060201 (2020). https://doi.org/10.1088/1367-2630/ab90d9 R. Kapral, J. Chem. Phys. 138, 020901 (2013). https://doi.org/10.1063/1.4773981 A. Altemose, M.A. Sánchez-Farrán, W. Duan, S. Schulz, A. Borhan, V.H. Crespi, A. Sen, Angew. Chem. Int. Ed. 56, 7817–7821 (2017). https://doi.org/10.1002/anie.201703239 C. Zhou, X. Chen, Z. Han, W. Wang, ACS Nano 13, 4064–4072 (2019). https://doi.org/10.1021/acsnano.9b08421 J. Palacci, S. Sacanna, A. Vatchinsky, P.M. Chaikin, D.J. Pine, J. Am. Chem. Soc. 135, 15978–15981 (2013). https://doi.org/10.1021/ja406090s D. Feldmann, S.R. Maduar, M. Santer, N. Lomadze, O.I. Vinogradova, S. Santer, Sci. Rep. 6, 36443 (2016). https://doi.org/10.1038/srep36443 F.A. Lavergne, H. Wendehenne, T. Bäuerle, C. Bechinger, Science 364, 70–74 (2019). https://doi.org/10.1126/science.aau5347 J. Sachs, S.N. Kottapalli, P. Fischer, D. Botin, T. Palberg, Colloid Polym. Sci. (2020). https://doi.org/10.1007/s00396-020-04693-6 M.A. Fernandez-Rodriguez, F. Grillo, L. Alvarez, L. Alvarez, M. Rathlef, I. Buttinoni, G. Volpe, L. Isa, Nat. Commun. 11, 4223 (2020). https://doi.org/10.1038/s41467-020-17864-4 C.C. Overly, K.D. Lee, E. Berthiaume, P.J. Hollenbeck, Proc. Natl. Am. Soc. 92, 3156–3160 (1995). https://doi.org/10.1523/JNEUROSCI.16-19-06056.1996 J. Diao, L. Young, S. Kim, E. Fogarty, S. Heilman, P. Zhou, M. Shuler, M. Wu, M. DeLisa, Lab Chip 6, 381–388 (2006). https://doi.org/10.1039/B511958H S. Krag Gjetting, C. Karkov Ytting, A. Schulz, A. Thoe Fuglsang, J. Exp. Botany63, 3207-3218 (2012). https://doi.org/10.1093/jxb/ers040 K. Shinohara, Y. Sugii, K. Okamoto, H. Madarame, A. Hibara, M. Tokeshi, T. Kitamori, Meas. Sci. Technol. 15, 955–960 (2004). https://doi.org/10.1088/0957-0233/15/5/025 F.M. Möller, F. Kriegel, M. Kieß, V. Sojo, D. Braun, Angew. Chem. Int. Ed. 56, 2340–2344 (2017). https://doi.org/10.1002/anie.201610781 C. Wu, J. Dai, X. Li, L. Gao, J. Wang, J. Liu, J. Zheng, X. Zhan, J. Chen, X. Cheng, M. Yang, J. Tang, Nat. Nanotechnol. (2020). https://doi.org/10.1038/s41565-020-00825-9 Y. Avnir, Y. Barenholz, Anal. Biochem. 347, 34–41 (2005). https://doi.org/10.1016/j.ab.2005.09.026 J. Isaksson, D. Nilsson, P. Kjäll, N.D. Robinson, A. Richter-Dahlfors, M. Berggren, Organ. Electron. 9, 303–309 (2008). https://doi.org/10.1016/j.orgel.2007.11.011 U.B. Kaupp, N.D. Kashikar, I. Weyand, Annu. Rev. Physiol. 70, 93 (2008). https://doi.org/10.1146/annurev.physiol.70.113006.100654 B. Liebchen, H. Löwen, Acc. Chem. Res. 51, 2982 (2018). https://doi.org/10.1021/acs.accounts.8b00215 R. Niu, T. Palberg, Soft Matter 14, 7554–7568 (2018). https://doi.org/10.1039/C8SM00995C R. Niu, D. Botin, A. Reinmüller, T. Palberg, Langmuir 33, 3450–3457 (2017). https://doi.org/10.1021/acs.langmuir.7b00288 B. Liebchen, R. Niu, T. Palberg, H. Löwen, Phys. Rev. E 98, 052610 (2018). https://doi.org/10.1103/PhysRevE.98.052610 B. Liebchen, D. Marenduzzo, I. Pagonabarraga, M.E. Cates, Phys. Rev. Lett. 115, 258301 (2015). https://doi.org/10.1103/PhysRevLett.115.258301 B. Liebchen, H. Löwen, in K. Lindenberg, R. Metzler, G. Oshanin (eds.) Chemical Kinetics Beyond the Textbook (World Scientific, 2019) pp. 493-516 R. Niu, S. Khodorov, J. Weber, A. Reinmüller, T. Palberg, NJP 19, 115014 (2017). arXiv:1708.02003 D. Botin, J. Wenzel, R. Niu, T. Palberg, Soft Matter 14, 8191–8204 (2018). https://doi.org/10.1039/C8SM00934A A.A. Farniya, M.J. Esplandiu, D. Reguera, A. Bachtold, Phys. Rev. Lett. 111, 168301 (2013). https://doi.org/10.1103/PhysRevLett.111.168301 M.J. Esplandiu, A.A. Farniya, D. Reguera, J. Chem. Phys. 144, 124702 (2016). https://doi.org/10.1063/1.4944319 R. Niu, P. Kreissl, A.T. Brown, G. Rempfer, D. Botin, C. Holm, T. Palberg, J. de Graaf, Soft Matter 13, 1505–1518 (2017). https://doi.org/10.1039/C6SM02240E J. Bodin, Water Resour. Res. 51, 1860–1871 (2015). https://doi.org/10.1002/2014WR015910 M. Heidari, A. Bregulla, S. Muinos Landin, F. Cichos, R. von Klitzing, Langmuir 36, 7775 (2020). https://doi.org/10.1021/acs.langmuir.0c00461 F.J. Millero, Geochim. Cosmochim. Acta. 59, 661–677 (1995). https://doi.org/10.1016/0016-7037(94)00354-O F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, Deep-Sea Res. I(55), 50–72 (2008). https://doi.org/10.1016/j.dsr.2007.10.001 E. Ruiz-Reina, F. Carrique, J. Phys. Chem. B 112, 11960–11967 (2008). https://doi.org/10.1021/jp8027885 P. Vanysek, CRC Handbook of Chemistry and Physics, 83rd edn. CRC Press, Boca Raton, pp. 76–78 (2002). https://doi.org/10.1016/j.gca.2011.02.010 R.E. Zeebe, Geochim. Cosmochim. Acta 75, 2483–2498 (2011). https://doi.org/10.1016/j.gca.2011.02.010 K. Shinohara, Y. Sugii, A. Hibara, M. Tokeshi, T. Kitamori, K. Okamoto, Exp. Fluids 38, 117–122 (2004). https://doi.org/10.1007/s00348-004-0906-z A. Hibara, M. Tokeshi, K. Uchiyama, H. Hisamoto, T. Kitamori, Anal. Sci. 17, 89–93 (2001). https://doi.org/10.2116/analsci.17.89 S. Battat, J.T. Ault, S. Khodaparast, H.A. Stone, Soft Matter 15, 3879–3885 (2019). https://doi.org/10.1039/C9SM00427K