Age-Associated Defect in Human TLR-1/2 Function

Journal of Immunology - Tập 178 Số 2 - Trang 970-975 - 2007
David van Duin1,2, Subhasis Mohanty1,2, Venetta Thomas2,3, Sandra Ginter2,4, Ruth R. Montgomery2,3, Erol Fikrig2,3, Heather Allore2,4, Ruslan Medzhitov2,5, Albert C. Shaw1,2
1Infectious Diseases, and
2Sections of
3Rheumatology
4‡Department of Internal Medicine and Program on Aging, and
5Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520

Tóm tắt

Abstract The effects of aging on human TLR function remain incompletely understood. We assessed TLR function and expression in peripheral blood monocytes from 159 subjects in 2 age categories, 21–30 and >65 years of age, using a multivariable mixed effect model. Using flow cytometry to assess TLR-induced cytokine production, we observed a substantial, highly significant defect in TLR1/2-induced TNF-α (p = 0.0003) and IL-6 (p < 0.0001) production, in older adults compared with young controls. In contrast to findings in aged mice, other TLR (including TLR2/6)-induced cytokine production appeared largely intact. These differences were highly significant even after correcting for covariates including gender, race, medications, and comorbidities. This defect in TLR1/2 signaling may result from alterations in baseline TLR1 surface expression, which was decreased by 36% in older adults (p < 0.0001), whereas TLR2 surface expression was unaffected by aging. Production of IL-6 (p < 0.0001) and TNF-α (p = 0.003) after stimulation by N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R,S)-propyl]-Cys-[S]-Ser1-[S]-Lys(4) trihydrochloride was strongly associated with TLR1 surface expression. Diminished TLR1/2 signaling may contribute to the increased infection-related morbidity and mortality and the impaired vaccine responses observed in aging humans.

Từ khóa


Tài liệu tham khảo

Curns, A. T., R. C. Holman, J. J. Sejvar, M. F. Owings, L. B. Schonberger. 2005. Infectious disease hospitalizations among older adults in the United States from 1990 through 2002. Arch. Intern. Med. 165: 2514-2520.

Pinner, R. W., S. M. Teutsch, L. Simonsen, L. A. Klug, J. M. Graber, M. J. Clarke, R. L. Berkelman. 1996. Trends in infectious diseases mortality in the United States. JAMA 275: 189-193.

Castle, S. C.. 2000. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis. 31: 578-585.

Linton, P. J., K. Dorshkind. 2004. Age-related changes in lymphocyte development and function. Nat. Immunol. 5: 133-139.

Takeda, K., T. Kaisho, S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21: 335-376.

O’Neill, L. A. J.. 2006. How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol. 18: 3-9.

Iwasaki, A., R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995.

Cook, D. N., D. S. Pisetsky, D. A. Schwartz. 2004. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol. 5: 975-979.

Renshaw, M., J. Rockwell, C. Engleman, A. Gewirtz, J. Katz, S. Sambhara. 2002. Cutting edge: impaired Toll-like receptor expression and function in aging. J. Immunol. 169: 4697-4701.

Boehmer, E. D., J. Goral, D. E. Faunce, E. J. Kovacs. 2004. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J. Leukocyte Biol. 75: 342-349.

Boehmer, E. D., M. J. Meehan, B. T. Cutro, E. J. Kovacs. 2005. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech. Ageing Dev. 126: 1305-1313.

Rink, L., I. Cakman, H. Kirchner. 1998. Altered cytokine production in the elderly. Mech. Ageing Dev. 102: 199-209.

Pietschmann, P., E. Gollob, S. Brosch, P. Hahn, S. Kudlacek, M. Willheim, W. Woloszczuk, M. Peterlik, K. H. Tragl. 2003. The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism. Exp. Gerontol. 38: 1119-1127.

Bruunsgaard, H., A. N. Pedersen, M. Schroll, P. Skinhoj, B. K. Pedersen. 1999. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans. Clin. Exp. Immunol. 118: 235-241.

Roubenoff, R., T. B. Harris, L. W. Abad, P. W. Wilson, G. E. Dallal, C. A. Dinarello. 1998. Monocyte cytokine production in an elderly population: effect of age and inflammation. J. Gerontol. A Biol. Sci. Med. Sci. 53: M20-M26.

van den Biggelaar, A. H. J., T. W. J. Huizinga, A. J. M. de Craen, J. Gussekloo, B. T. Heijmans, M. Frolich, R. G. J. Westendorp. 2004. Impaired innate immunity predicts frailty in old age: the Leiden 85-plus study. Exp. Gerontol. 39: 1407

Verbeke, G., G. Molenberghs. 1997. Linear mixed models in practice. G. Verbeke, and G. Molenberghs, eds. A SAS-Oriented approach Springer, New York.

Laird, N. M., J. H. Ware. 1982. Random-effects models for longitudinal data. Biometrics 38: 963-974.

Schluchter, M. D., J. D. Elashoff. 1990. Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures. J. Stat. Comput. Simul. 37: 69-87.

Tapping, R. I., P. S. Tobias. 2003. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J. Endotoxin Res. 9: 264-268.

Nishiya, T., A. L. DeFranco. 2004. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J. Biol. Chem. 279: 19008-19017.

Alexopoulou, L., V. Thomas, M. Schnare, Y. Lobet, J. Anguita, R. T. Schoen, R. Medzhitov, E. Fikrig, R. A. Flavell. 2002. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8: 878-884.

Ligthart, G. J., J. X. Corberand, C. Fournier, P. Galanaud, W. Hijmans, B. Kennes, H. K. Muller-Hermelink, G. G. Steinmann. 1984. Admission criteria for immunogerontological studies in man: the SENIEUR protocol. Mech. Ageing Dev. 28: 47-55.

Wick, G., B. Grubeck-Loebenstein. 1997. The aging immune system: primary and secondary alterations of immune reactivity in the elderly. Exp. Gerontol. 32: 401-413.

Wyllie, D. H., E. Kiss-Toth, A. Visintin, S. C. Smith, S. Boussouf, D. M. Segal, G. W. Duff, S. K. Dower. 2000. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J. Immunol. 165: 7125-7132.

Takeuchi, O., S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, R. L. Modlin, S. Akira. 2002. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169: 10-14.

Ozinsky, A., D. M. Underhill, J. D. Fontenot, A. M. Hajjar, K. D. Smith, C. B. Wilson, L. Schroeder, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Soc. USA 97: 13766-13771.

Massari, P., A. Visintin, J. Gunawardana, K. A. Halmen, C. A. King, D. T. Golenbock, L. M. Wetzler. 2006. Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J. Immunol. 176: 2373-2380.

Quesniaux, V. J., D. M. Nicolle, D. Torres, L. Kremer, Y. Guerardel, J. Nigou, G. Puzo, F. Erard, B. Ryffel. 2004. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J. Immunol. 172: 4425-4434.

Gilleron, M., J. Nigou, D. Nicolle, V. Quesniaux, G. Puzo. 2006. The acylation state of mycobacterial lipomannans modulates innate immunity response through Toll-like receptor 2. Chem. Biol. 13: 39-47.

Sandor, F., E. Latz, F. Re, L. Mandell, G. Repik, D. T. Golenbock, T. Espevik, E. A. Kurt-Jones, R. W. Finberg. 2003. Importance of extra- and intracellular domains of TLR1 and TLR2 in NFκB signaling. J. Cell Biol. 162: 1099-1110.

Doherty, T. M., M. Arditi. 2004. TB, or not TB: that is the question—does TLR signaling hold the answer?. J. Clin. Invest. 114: 1699-1703.

Bulut, Y., K. S. Michelsen, L. Hayrapetian, Y. Naiki, R. Spallek, M. Singh, M. Arditi. 2005. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280: 20961-20967.

Bafica, A., C. A. Scanga, C. G. Feng, C. Leifer, A. Cheever, A. Sher. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202: 1715-1724.