Optimal power flow considering transient thermal behavior of overhead transmission lines
Tài liệu tham khảo
Sang, 2018, Stochastic transmission impedance control for enhanced wind energy integration, IEEE Trans Sust Energy, 9, 1108, 10.1109/TSTE.2017.2770129
Douglass, 2016, Real-time overhead transmission-line monitoring for dynamic rating, IEEE Trans Power Delivery, 31, 921, 10.1109/TPWRD.2014.2383915
Azizi, 2018, Dynamic performance analysis, stability margin improvement and transfer power capability enhancement in DFIG based wind turbines at weak ac grid conditions, Int J Electr Power Energy Syst, 99, 434, 10.1016/j.ijepes.2018.01.040
Rajabi-Ghahnavieh, 2015, Optimal unified power flow controller application to enhance total transfer capability, IET Gener Transm Distrib, 9, 358, 10.1049/iet-gtd.2014.0110
Jiang, 2010, Transfer path stability enhancement by voltage-sourced converter-based FACTS controllers, IEEE Trans Power Delivery, 25, 1019, 10.1109/TPWRD.2009.2034895
Banakar, 2005, Electrothermal coordination Part I: Theory and implementation scheme, IEEE Trans Power Syst, 20, 798, 10.1109/TPWRS.2005.846196
Alguacil, 2005, Electrothermal coordination Part II: case studies, IEEE Trans Power Syst, 20, 1738, 10.1109/TPWRS.2005.857836
Rasmus Olsen, 2013, Electrothermal coordination in cable based transmission grids, IEEE Trans Power Syst, 28, 4867, 10.1109/TPWRS.2013.2278040
Ngoko, 2018, Optimal power flow considering line-conductor temperature limits under high penetration of intermittent renewable energy sources, Int J Electr Power Energy Syst, 101, 255, 10.1016/j.ijepes.2018.03.023
Jadhav, 2016, Temperature dependent optimal power flow using gbest-guided artificial bee colony algorithm, Int J Electr Power Energy Syst, 77, 77, 10.1016/j.ijepes.2015.11.026
Nick, 2016, Security constrained unit commitment with dynamic thermal line rating, IEEE Trans Power Syst, 31, 2014, 10.1109/TPWRS.2015.2445826
Wang MX, Han XS. Study on electro-thermal coupling optimal power flow model and its simplification. In: Proc IEEE power and energy soc general meeting; 2010. p. 1–6.
Gan, 2000, Stability-constrained optimal power flow, IEEE Trans Power Syst, 15, 535, 10.1109/59.867137
Chen, 2001, Optimal operation solutions of power systems with transient stability constraints, IEEE Trans Power Syst, 48, 327
Sun, 2004, Approach for optimal power flow with transient stability constraints, IEE Proc, Gener Transm Distrib, 151, 8, 10.1049/ip-gtd:20040059
Xia, 2005, Direct nonlinear primal–dual interior-point method for transient stability constrained optimal power flow, IEE Proc, Gener Transm Distrib, 152, 11, 10.1049/ip-gtd:20041204
Zárate-Miano, 2010, Securing transient stability using time-domain simulations within an optimal power flow, IEEE Trans Power Syst, 25, 243, 10.1109/TPWRS.2009.2030369
Pizano-Martínez, 2014, Selective transient stability-constrained optimal power flow using a SIME and trajectory sensitivity unified analysis, Elec Power Syst Res, 9, 32, 10.1016/j.epsr.2013.12.003
IEEE Standard Board. IEEE Std 738—2006. IEEE standard for calculating the current-temperature of bare overhead conductors. New York: The Institute of Electrical and Electronics Engineers, Inc.; 2006.
Wang, 2018, Contingency analysis considering the transient thermal behavior of overhead transmission lines, IEEE Trans Power Syst, 33, 4982, 10.1109/TPWRS.2018.2812826
YuChi, 1994, A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows, IEEE Trans Power Syst, 9, 876, 10.1109/59.317660
Jabr, 2002, A primal–dual interior point method for optimal power flow dispatching, IEEE Trans Power Syst, 17, 654, 10.1109/TPWRS.2002.800870
Nie, 2013, AC–DC optimal reactive power flow model via predictor–corrector primal-dual interior-point method, IET Gener Transm Distrib, 7, 382, 10.1049/iet-gtd.2012.0497
Wood, 1996
Yang, 2018, Parallel computing of multi-contingency optimal power flow with transient stability constraints, Protect Control Modern Power Syst, 2, 1