DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Howlader N, Noone A, Krapcho M (2013) SEER cancer statistics review, 1975–2010, National Cancer Institute. National Cancer Institute, Bethesda
Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. doi: 10.3322/caac.21254
Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. doi: 10.1038/nri3191
Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277. doi: 10.1038/nm0303-269
Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L et al (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16:2646–2655. doi: 10.1158/1078-0432.CCR-10-0041
Itzhaki O, Hovav E, Ziporen Y (2011) Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother 34:212–220
Ho WY, Yee C, Greenberg PD (2002) Adoptive therapy with CD8(+) T cells: it may get by with a little help from its friends. J Clin Investig 110:1415–1417. doi: 10.1172/JCI17214
Payne KK, Zoon CK, Wan W, Marlar K, Keim RC, Kenari MN et al (2013) Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells. Breast Cancer Res Treat 142:45–57. doi: 10.1007/s10549-013-2733-5
Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nährig J et al (2008) Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57:271–280. doi: 10.1007/s00262-007-0355-7
Domschke C, Ge Y, Bernhardt I, Schott S, Keim S, Juenger S et al (2013) Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother 62:1053–1060. doi: 10.1007/s00262-013-1414-x
Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146. doi: 10.1038/nrc3670
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immuno-surveillance to tumor escape. Nat Immunol 3:991–998
Kmieciak M, Knutson K, Dumur C, Manjili M (2007) HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol 37:675–685. doi: 10.1002/eji.200636639.HER-2/neu
Símová J, Polláková V, Indrová M, Mikyšková R, Bieblová J, Stěpánek I et al (2011) Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status. Br J Cancer 105:1533–1541. doi: 10.1038/bjc.2011.428
Krishnadas DK, Bao L, Bai F, Chencheri SC, Lucas K (2014) Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumour Biol 35:5753–5762. doi: 10.1007/s13277-014-1764-9
Cruz CR, Gerdemann U, Leen AM, Shafer JA, Ku S, Tzou B et al (2011) Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin Cancer Res 17:7058–7066. doi: 10.1158/1078-0432.CCR-11-1873
Karpf AR (2006) A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics 1:116–120
Triozzi PL, Aldrich W, Achberger S, Ponnazhagan S, Alcazar O, Saunthararajah Y (2012) Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice. Cancer Immunol Immunother 61:1441–1450. doi: 10.1007/s00262-012-1204-x
Odunsi K, Matsuzaki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A et al (2014) Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2:37–49. doi: 10.1158/2326-6066.CIR-13-0126
Toor AA, Payne KK, Chung HM, Sabo RT, Hazlett AF, Kmieciak M et al (2012) Epigenetic induction of adaptive immune response in multiple myeloma: sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity. Br J Haematol 158:700–711. doi: 10.1111/j.1365-2141.2012.09225.x
Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B et al (2014) Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74:104–118. doi: 10.1158/0008-5472.CAN-13-1545
Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J et al (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8:e57114. doi: 10.1371/journal.pone.0057114
Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797. doi: 10.4049/jimmunol.1201449
Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi: 10.1038/nri2506
Le HK, Graham L, Cha E, Morales JK, Manjili MH (2009) Bear HD Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Internat Immunopharmacol 9:900–909. doi: 10.1016/j.intimp2009.03.015
Gibb DR, Saleem SJ, Kang DJ, Subler MA, Conrad DH (2011) ADAM10 overexpression shifts lympho-and myelopoiesis by dysregulating site2/site3 cleavage products of Notch. J Immunol 186:4244–4255. doi: 10.4049/jimmunol.1003318
Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH (2009) Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58:941–953. doi: 10.1007/s00262-008-0609-z
Cha E, Graham L, Manjili MH, Bear HD (2010) IL-7 + IL-15 are superior to IL-2 for the ex vivo expansion of 4T1 mammary carcinoma-specific T cells with greater efficacy against tumors in vivo. Breast Cancer Res Treat 122:359–369. doi: 10.1007/s10549-009-0573-0
Meier J, Roberts C, Avent K, Hazlett A, Berrie J, Payne K et al (2013) Fractal organization of the human T cell repertoire in health and after stem cell transplantation. Biol Blood Marrow Transplant 19:366–377. doi: 10.1016/j.bbmt.2012.12.004
Ascierto ML, Idowu MO, Zhao Y, Khalak H, Payne KK, Wang X-Y et al (2013) Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. J Transl Med 11:145. doi: 10.1186/1479-5876-11-145
Bunt SK, Sinha P, Clements VK, Ostrand-rosenberg S, Leips J (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290
Saleem SJ, Martin RK, Morales JK, Sturgill JL, Gibb DR, Graham L et al (2012) Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol 189:511–515. doi: 10.3039/jimmunol.1200647
Miller CHT, Graham L, Bear HD (2010) Phenotype, functions and fate of adoptively transferred tumor draining lymphocytes activated ex vivo in mice with an aggressive weakly immunogenic mammary carcinoma. BMC Immunol 11:54. doi: 10.1186/1471-2172-11-54
Kmieciak M, Payne KK, Idowu MO, Grimes MM, Graham L, Ascierto M-L et al (2011) Tumor escape and progression of HER-2/neu negative breast cancer under immune pressure. J Transl Med 9:35. doi: 10.1186/1479-5876-9-35
Guo ZS, Hong JA, Irvine KR, Chen GA, Spiess PJ, Liu Y et al (2006) De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 66:1105–1113. doi: 10.1158/0008-5472.CAN-05-3020
Lampen MH, van Hall T (2011) Strategies to counteract MHC-I defects in tumors. Curr Opin Immunol 23:293–298. doi: 10.1016/j.coi.2010.12.005
Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 111:11774–11779. doi: 10.1073/pnas.1410626111
Tomasi TB, Magner WJ, Khan AN (2006) Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 55:1159–1184. doi: 10.1007/s00262-006-0164-4
Heninger E, Krueger TE, Lang JM (2015) Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 6:29. doi: 10.3389/fimmu.2015.00029
Daurkin I, Eruslanov E, Vieweg J, Kusmartsev S (2010) Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother 59:697–706. doi: 10.1007/s00262-009-0786-4
Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P (2014) Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2:14. doi: 10.1186/2051-1426-2-14
Ikezawa Y, Nakazawa M, Tamura C, Takahashi K, Minami M, Ikezawa Z (2005) Cyclophosphamide decreases the number, percentage and the function of CD25 + CD4 + regulatory T cells, which suppress induction of contact hypersensitivity. J Dermatol Sci 39:105–112. doi: 10.1016/j.jdermsci.2005.02.002
Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al (2004) CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344. doi: 10.1002/eji.200324181