High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators
Tóm tắt
High-order subharmonic parametric resonance of coupled microbeams is studied based on a model of multiple nonlinearly coupled micromechanical nonlinear oscillators. Of particular interest are the effects of nonlinear coupling between adjacent oscillators and elastic nonlinearity of individual oscillators. First, we analyze parametric resonance of a nonlinearly coupled nonlinear oscillator, and conduct instability analysis of steady-state solutions. Then we study parametric resonance of three nonlinearly coupled nonlinear oscillators. It is found that the nonlinear coupling between adjacent oscillators leads to the appearance of high-order subharmonic parametric resonance which, to the best of our knowledge, has received little attention in previous related works. In the present analysis, the effects of elastic nonlinearity of individual oscillators, damping and some loading parameters (such as dc and ac voltages) on high-order subharmonics are also examined in detail. Our results suggest that the range of excitation frequency for parametric resonance of coupled oscillators can be much larger than what the previous studies predicted, due to the appearance of high-order subharmonic parametric resonance. These results are believed to offer new and interesting insights into the ongoing research on nonlinear dynamics of coupled microbeams or nanobeams in MEMS or NEMS.
Tài liệu tham khảo
Craighead H.G.: Nanoelectromechanical systems. Science 290, 1532–1535 (2000)
Roukes M.L.: Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (2001)
Hierold C.: From micro- to nanosystems: mechanical sensors go nano. J. Micromech. Microeng. 14, S1–S11 (2004)
Ekinci K.L., Roukes M.L.: Nanoelectromechanical systems. Rev. Scientific Instrum. 76, 061101 (2005)
Tas N., Sonnenberg T., Jansen H., Legtenberg R., Elwenspoek M.: Stiction in surface micromachining. J. Micromech. Microeng. 6, 385–397 (1996)
Maboudian R., Howe R.T.: Critical review: adhesion in surface micromechanical structures. J. Vacuum Sci. Technol. B 15, 1–20 (1997)
Mastrangelo C.H.: Adhesion-related failure mechanisms in micromechanical devices. Tribol. Lett. 3, 223–238 (1997)
Bhushan, B. (eds): Springer Handbook of Nanotechnology. Springer, Berlin (2004)
Buks E., Roukes M.L.: Electrically tunable collective response in a coupled micromechanical array. J. Microelectromech. Syst. 11, 802–807 (2002)
Lifshitz R., Cross M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)
Bromberg Y., Cross M.C., Lifshitz R.: Response of discrete nonlinear systems with many degrees of freedom. Phys. Rev. E 73, 016214 (2006)
Zalalutdinov M., Ilic B., Czaplewski D., Zehnder A., Craighead H.G., Parpia J.M.: Frequency-tunable micromechanical oscillator. Appl. Phys. Lett. 77, 3287–3289 (2000)
Sato M., Hubbard B.E., Sievers A.J., Ilic B., Czaplewski D.A., Craighead H.G.: Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 90, 044102 (2003)
Rhoads J.F., Shaw S.W., Turner K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)
Rhoads J.F., Shaw S.W., Turner K.L., Moehlis J., DeMartini B.E., Zhang W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296, 797–829 (2006)
Goldobin D., Pikovsky A.: Collective modes in parametrically excited oscillator arrays. Europhys. Lett. 59, 193–198 (2002)
Bobryk R.V., Chrzeszczyk A.: Parametric resonance in coupled oscillators driven by colored noise. Europhys. Lett. 68, 344–349 (2004)
Pelesko J.A., Bernstein D.H.: Modeling MEMS and NEMS. Chapman & Hill/CRC, Boca Raton (2003)
Grade J.D., Jerman H., Kenny T.W.: Design of large deflection electrostatic actuators. J. Microelectromech. Syst. 12, 335–343 (2003)
Sounart T.L., Michalske T.A., Zavadil K.R.: Frequency-dependent electrostatic actuation in microfluidic MEMS. J. Microelectromech. Syst. 14, 125–133 (2005)
Zhu J., Ru C.Q., Mioduchowski A.: Structural instability of a parallel array of mutually attracting identical microbeams. J. Micromech. Microeng. 16, 2220–2229 (2006)
Zhu J., Ru C.Q., Mioduchowski A.: Surface-forces-driven instability of comb-drive microcantilevers in MEMS. J. Adhesion Sci. Technol. 20, 1125–1146 (2006)
Sato M., Hubbard B.E., Sievers A.J., Ilic B., Craighead H.G.: Optical manipulation of intrinsic localized vibrational energy in cantilever arrays. Europhys. Lett. 66, 318–323 (2004)
Flach S., Willis C.R.: Discrete breathers. Phys. Rep. 295, 181–264 (1998)
Zhu J., Ru C.Q., Mioduchowski A.: High-order subharmonic parametric resonance of nonlinearly coupled micromechanical oscillators. Eur. Phys. J. B 58, 411–421 (2007)
Mclachlan N.W.: Theory and Application of Mathieu Functions. Dover, New York (1964)
Nayfeh A.H., Mook D.T.: Nonlinear Oscillation. Wiley, New York (1979)
Tso W.K., Caughey T.K.: Parametric excitation of a nonlinear system. J. Appl. Mech. Trans. ASME 32, 899–902 (1965)
Bobylev N.A., Burman Y.M., Korovin S.K.: Approximate Procedures in Nonlinear Oscillation Theory. Walter de Gruyter, Berlin (1994)
Mond M., Cederbaum G., Khan P.B., Zarmi Y.: Stability analysis of the nonlinear Mathieu equation. J. Sound Vib. 167, 77–89 (1993)