Effect of TiN addition on the microstructure and mechanical properties of TiB2-FeNi based cermets

Materials Science and Engineering: A - Tập 743 - Trang 546-557 - 2019
Ning Wu1, Fengdan Xue1, Jianying Wang1, Hailin Yang1, Fenghua Luo1, Jianming Ruan1
1State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Basu, 2006, Processing and properties of monolithic TiB2-based materials, Int. Mater. Rev., 51, 352, 10.1179/174328006X102529

Munro, 2000, Material properties of titanium diboride, J. Res. Nat. Inst. Stand. Tech., 105, 709, 10.6028/jres.105.057

Wen, 2001, Reaction synthesis of TiB2-TiC composites with enhanced toughness, Acta Mater., 49, 1463, 10.1016/S1359-6454(01)00034-9

Demirskyi, 2015, High-strength TiB2-TaC ceramic composites prepared using reactive spark plasma consolidation, Ceram. Int., 42, 1298, 10.1016/j.ceramint.2015.09.065

Venkateswaran, 2006, Densification and properties of transition metal borides-based cermets via spark plasma sintering, J. Eur. Ceram. Soc., 26, 2431, 10.1016/j.jeurceramsoc.2005.05.011

Mroz, 1995, Titanium diboride, Am. Ceram. Soc. Bull., 74, 158

Huang, 2012, Microstructure transformation and mechanical properties of TiC-TiB2 ceramics prepared by combustion synthesis in high gravity field, Mater. Sci. Eng. A, 553, 105, 10.1016/j.msea.2012.05.099

Zhao, 2014, A study on in-situ synthesis of TiB2-SiC ceramic composites by reactive hot pressing, Ceram. Int., 40, 2305, 10.1016/j.ceramint.2013.07.152

Heidari, 2012, Interaction of molten aluminum with porous TiB2-based ceramics containing Ti-Fe additives, J. Eur. Ceram. Soc., 32, 937, 10.1016/j.jeurceramsoc.2011.10.053

Baik, 1987, Effect of oxygen contamination on densification of TiB2, J. Am. Ceram. Soc., 70, 527, 10.1111/j.1151-2916.1987.tb05699.x

Mukhopadhyay, 2009, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics, J. Eur. Ceram. Soc., 29, 505, 10.1016/j.jeurceramsoc.2008.06.030

Wang, 2002, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc., 22, 1045, 10.1016/S0955-2219(01)00424-1

Ran, 2011, In situ platelet-toughened TiB2-SiC composites prepared by reactive pulsed electric current sintering, Scr. Mater., 64, 1145, 10.1016/j.scriptamat.2011.03.015

Li, 2002, Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid, J. Eur. Ceram. Soc., 22, 973, 10.1016/S0955-2219(01)00403-4

Tuffe, 1996, Densification, microstructure and mechanical properties of TiB2-B4C based composites, Int. J. Refract. Met. Hard Mater., 14, 305, 10.1016/S0263-4368(96)00012-1

Srivatsan, 2006, Microstructural development and hardness of TiB2-B4C composite samples: influence of consolidation temperature, J. Alloy. Compd., 413, 63, 10.1016/j.jallcom.2005.04.209

Gu, 2008, Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles, Mater. Sci. Eng. A, 486, 167, 10.1016/j.msea.2007.09.040

Murthy, 2006, Processing and properties of TiB2 with MoSi2 sinter-additive: a First Report, J. Am. Ceram. Soc., 89, 131, 10.1111/j.1551-2916.2005.00652.x

Einarsrud, 1997, Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives, J. Am. Ceram. Soc., 80, 3013, 10.1111/j.1151-2916.1997.tb03227.x

Kang, 2001, Pressureless sintering and properties of titanium diboride ceramics containing chromium and iron, J. Am. Ceram. Soc., 84, 893, 10.1111/j.1151-2916.2001.tb00763.x

Asl, 2017, Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites, Ceram. Int., 43, 13924, 10.1016/j.ceramint.2017.07.121

Mukhopadhyay, 2013, Spark plasma sintering may lead to phase instability and inferior mechanical properties: a case study with TiB2, Scr. Mater., 69, 159, 10.1016/j.scriptamat.2013.02.027

Chlup, 2015, Effect of metallic dopants on the microstructure and mechanical properties of TiB2, J. Eur. Ceram. Soc., 35, 2745, 10.1016/j.jeurceramsoc.2015.03.027

Jensen, 2008, Degradation of TiB2 ceramics in liquid aluminum, J. Eur. Ceram. Soc., 28, 3155, 10.1016/j.jeurceramsoc.2008.05.011

Ağaoğulları, 2012, Influences of metallic Co and mechanical alloying on the microstructural and mechanical properties of TiB2 ceramics prepared via pressureless sintering, J. Eur. Ceram. Soc., 32, 1949, 10.1016/j.jeurceramsoc.2011.10.033

Zhang, 2006, Microstructure and mechanical properties of TiB2/(Cu, Ni) interpenetrating phase composites, Scr. Mater., 55, 565, 10.1016/j.scriptamat.2006.04.048

Asl, 2016, Influence of silicon carbide addition on the microstructural development of hot pressed zirconium and titanium diborides, Ceram. Int., 42, 5375, 10.1016/j.ceramint.2015.12.072

Ji, 2015, Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, J. Eur. Ceram. Soc., 41, 14482

Liu, 2018, Microstructure and mechanical behavior of spark plasma sintered TiB2/Fe-15Cr-8Al-20Mn composites, J. Alloy. Compd., 747, 886, 10.1016/j.jallcom.2018.03.113

Wu, 2017, Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering, Ceram. Int., 43, 1394, 10.1016/j.ceramint.2016.10.100

Peng, 2013, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 39, 78, 10.1016/j.ijrmhm.2012.07.001

Zeng, 2017, Effect of WC addition on the microstructure and mechanical properties of TiN-based cermets, Ceram. Int., 43, 167, 10.1016/j.ceramint.2016.09.129

Schubert, 1998, Hardness to toughness relation-ship of fine-grained WC-Co hardmetals, Int. J. Refract. Met. Hard Mater., 16, 133, 10.1016/S0263-4368(98)00028-6

Upadhyaya, 2001, Material science of cemented carbides-an overview, Mater. Des., 22, 483, 10.1016/S0261-3069(01)00007-3

Zhuang, 2017, Influence of temperature on sintering behavior and properties of TiC-Fe-Co-Ni-Cr-Mo cermets, Ceram. Int., 43, 15992, 10.1016/j.ceramint.2017.08.186

Ahn, 2000, Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc., 83, 1489, 10.1111/j.1151-2916.2000.tb01415.x

Jung, 2004, Effect of ultra-fine powders on the microstructure of Ti(CN)-x WC-Ni cermets, Acta Mater., 52, 1379, 10.1016/j.actamat.2003.11.021

Peng, 2013, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 39, 78, 10.1016/j.ijrmhm.2012.07.001

N. Wu, F.D. Xue, H.L. Yang, G.P. Li, F.H. Luo, J.M. Ruan, Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites, Ceram. Int. 〈https://doi.org/10.1016/j.ceramint.2018.08.270〉.

Chicardi, 2011, Inverse core-rim microstructure in (Ti,Ta)(C,N)-based cermets developed by a mechanically induced self-sustaining reaction, Int. J. Refract. Met. Hard Mater., 31, 39, 10.1016/j.ijrmhm.2011.09.003

Xiong, 2016, TiC whisker reinforced ultra-fine TiC-based cermets: microstructure and mechanical properties, Ceram. Int., 42, 6858, 10.1016/j.ceramint.2016.01.069

Streitenberger, 2015, The envelope of size distributions in Ostwald ripening and grain growth, Acta Mater., 88, 334, 10.1016/j.actamat.2015.01.035

Qu, 2010, Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni cermets, Int. J. Refract. Met. Hard Mater., 28, 243, 10.1016/j.ijrmhm.2009.10.005

Liu, 2004, Effect of starting powders size on the Al2O3-TiC composites, Int. J. Refract. Met. Hard Mater., 22, 265, 10.1016/j.ijrmhm.2004.09.001

Yang, 2012, Microstructure and mechanical properties of in situ synthesized (TiB2 + TiC)/Ti3SiC2 composites, Ceram. Int., 38, 649, 10.1016/j.ceramint.2011.06.066

Guo, 2009, Microstructure and properties of Ti(C,N)-Mo2C-Fe cermets, Int. J. Refract. Met. Hard Mater., 27, 781, 10.1016/j.ijrmhm.2009.01.003

Wang, 2014, Effects of sintering processes on mechanical properties and microstructure of Ti(C,N)-TiB2-Ni composite ceramic cutting tool material, Ceram. Int., 40, 16513, 10.1016/j.ceramint.2014.08.003