Effect of TiN addition on the microstructure and mechanical properties of TiB2-FeNi based cermets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Basu, 2006, Processing and properties of monolithic TiB2-based materials, Int. Mater. Rev., 51, 352, 10.1179/174328006X102529
Munro, 2000, Material properties of titanium diboride, J. Res. Nat. Inst. Stand. Tech., 105, 709, 10.6028/jres.105.057
Wen, 2001, Reaction synthesis of TiB2-TiC composites with enhanced toughness, Acta Mater., 49, 1463, 10.1016/S1359-6454(01)00034-9
Demirskyi, 2015, High-strength TiB2-TaC ceramic composites prepared using reactive spark plasma consolidation, Ceram. Int., 42, 1298, 10.1016/j.ceramint.2015.09.065
Venkateswaran, 2006, Densification and properties of transition metal borides-based cermets via spark plasma sintering, J. Eur. Ceram. Soc., 26, 2431, 10.1016/j.jeurceramsoc.2005.05.011
Mroz, 1995, Titanium diboride, Am. Ceram. Soc. Bull., 74, 158
Huang, 2012, Microstructure transformation and mechanical properties of TiC-TiB2 ceramics prepared by combustion synthesis in high gravity field, Mater. Sci. Eng. A, 553, 105, 10.1016/j.msea.2012.05.099
Zhao, 2014, A study on in-situ synthesis of TiB2-SiC ceramic composites by reactive hot pressing, Ceram. Int., 40, 2305, 10.1016/j.ceramint.2013.07.152
Heidari, 2012, Interaction of molten aluminum with porous TiB2-based ceramics containing Ti-Fe additives, J. Eur. Ceram. Soc., 32, 937, 10.1016/j.jeurceramsoc.2011.10.053
Baik, 1987, Effect of oxygen contamination on densification of TiB2, J. Am. Ceram. Soc., 70, 527, 10.1111/j.1151-2916.1987.tb05699.x
Mukhopadhyay, 2009, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics, J. Eur. Ceram. Soc., 29, 505, 10.1016/j.jeurceramsoc.2008.06.030
Wang, 2002, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc., 22, 1045, 10.1016/S0955-2219(01)00424-1
Ran, 2011, In situ platelet-toughened TiB2-SiC composites prepared by reactive pulsed electric current sintering, Scr. Mater., 64, 1145, 10.1016/j.scriptamat.2011.03.015
Li, 2002, Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid, J. Eur. Ceram. Soc., 22, 973, 10.1016/S0955-2219(01)00403-4
Tuffe, 1996, Densification, microstructure and mechanical properties of TiB2-B4C based composites, Int. J. Refract. Met. Hard Mater., 14, 305, 10.1016/S0263-4368(96)00012-1
Srivatsan, 2006, Microstructural development and hardness of TiB2-B4C composite samples: influence of consolidation temperature, J. Alloy. Compd., 413, 63, 10.1016/j.jallcom.2005.04.209
Gu, 2008, Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles, Mater. Sci. Eng. A, 486, 167, 10.1016/j.msea.2007.09.040
Murthy, 2006, Processing and properties of TiB2 with MoSi2 sinter-additive: a First Report, J. Am. Ceram. Soc., 89, 131, 10.1111/j.1551-2916.2005.00652.x
Einarsrud, 1997, Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives, J. Am. Ceram. Soc., 80, 3013, 10.1111/j.1151-2916.1997.tb03227.x
Kang, 2001, Pressureless sintering and properties of titanium diboride ceramics containing chromium and iron, J. Am. Ceram. Soc., 84, 893, 10.1111/j.1151-2916.2001.tb00763.x
Asl, 2017, Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites, Ceram. Int., 43, 13924, 10.1016/j.ceramint.2017.07.121
Mukhopadhyay, 2013, Spark plasma sintering may lead to phase instability and inferior mechanical properties: a case study with TiB2, Scr. Mater., 69, 159, 10.1016/j.scriptamat.2013.02.027
Chlup, 2015, Effect of metallic dopants on the microstructure and mechanical properties of TiB2, J. Eur. Ceram. Soc., 35, 2745, 10.1016/j.jeurceramsoc.2015.03.027
Jensen, 2008, Degradation of TiB2 ceramics in liquid aluminum, J. Eur. Ceram. Soc., 28, 3155, 10.1016/j.jeurceramsoc.2008.05.011
Ağaoğulları, 2012, Influences of metallic Co and mechanical alloying on the microstructural and mechanical properties of TiB2 ceramics prepared via pressureless sintering, J. Eur. Ceram. Soc., 32, 1949, 10.1016/j.jeurceramsoc.2011.10.033
Zhang, 2006, Microstructure and mechanical properties of TiB2/(Cu, Ni) interpenetrating phase composites, Scr. Mater., 55, 565, 10.1016/j.scriptamat.2006.04.048
Asl, 2016, Influence of silicon carbide addition on the microstructural development of hot pressed zirconium and titanium diborides, Ceram. Int., 42, 5375, 10.1016/j.ceramint.2015.12.072
Ji, 2015, Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, J. Eur. Ceram. Soc., 41, 14482
Liu, 2018, Microstructure and mechanical behavior of spark plasma sintered TiB2/Fe-15Cr-8Al-20Mn composites, J. Alloy. Compd., 747, 886, 10.1016/j.jallcom.2018.03.113
Wu, 2017, Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering, Ceram. Int., 43, 1394, 10.1016/j.ceramint.2016.10.100
Peng, 2013, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 39, 78, 10.1016/j.ijrmhm.2012.07.001
Zeng, 2017, Effect of WC addition on the microstructure and mechanical properties of TiN-based cermets, Ceram. Int., 43, 167, 10.1016/j.ceramint.2016.09.129
Schubert, 1998, Hardness to toughness relation-ship of fine-grained WC-Co hardmetals, Int. J. Refract. Met. Hard Mater., 16, 133, 10.1016/S0263-4368(98)00028-6
Upadhyaya, 2001, Material science of cemented carbides-an overview, Mater. Des., 22, 483, 10.1016/S0261-3069(01)00007-3
Zhuang, 2017, Influence of temperature on sintering behavior and properties of TiC-Fe-Co-Ni-Cr-Mo cermets, Ceram. Int., 43, 15992, 10.1016/j.ceramint.2017.08.186
Ahn, 2000, Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc., 83, 1489, 10.1111/j.1151-2916.2000.tb01415.x
Jung, 2004, Effect of ultra-fine powders on the microstructure of Ti(CN)-x WC-Ni cermets, Acta Mater., 52, 1379, 10.1016/j.actamat.2003.11.021
Peng, 2013, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 39, 78, 10.1016/j.ijrmhm.2012.07.001
N. Wu, F.D. Xue, H.L. Yang, G.P. Li, F.H. Luo, J.M. Ruan, Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites, Ceram. Int. 〈https://doi.org/10.1016/j.ceramint.2018.08.270〉.
Chicardi, 2011, Inverse core-rim microstructure in (Ti,Ta)(C,N)-based cermets developed by a mechanically induced self-sustaining reaction, Int. J. Refract. Met. Hard Mater., 31, 39, 10.1016/j.ijrmhm.2011.09.003
Xiong, 2016, TiC whisker reinforced ultra-fine TiC-based cermets: microstructure and mechanical properties, Ceram. Int., 42, 6858, 10.1016/j.ceramint.2016.01.069
Streitenberger, 2015, The envelope of size distributions in Ostwald ripening and grain growth, Acta Mater., 88, 334, 10.1016/j.actamat.2015.01.035
Qu, 2010, Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni cermets, Int. J. Refract. Met. Hard Mater., 28, 243, 10.1016/j.ijrmhm.2009.10.005
Liu, 2004, Effect of starting powders size on the Al2O3-TiC composites, Int. J. Refract. Met. Hard Mater., 22, 265, 10.1016/j.ijrmhm.2004.09.001
Yang, 2012, Microstructure and mechanical properties of in situ synthesized (TiB2 + TiC)/Ti3SiC2 composites, Ceram. Int., 38, 649, 10.1016/j.ceramint.2011.06.066
Guo, 2009, Microstructure and properties of Ti(C,N)-Mo2C-Fe cermets, Int. J. Refract. Met. Hard Mater., 27, 781, 10.1016/j.ijrmhm.2009.01.003