A new strongly minimal set

Annals of Pure and Applied Logic - Tập 62 - Trang 147-166 - 1993
Ehud Hrushovski1,2
1MIT, Cambridge, MA 02139 USA
2Hebrew University at Jerusalem, Israel

Tài liệu tham khảo

Baldwin, 1971, On strongly minimal sets, J. Symbolic Logic, 36, 79, 10.2307/2271517 Cherlin, 1980, ℵ0-categorical ℵ0-stable structures, Ann. Pure Appl. Logic, 18, 227 Fraissé, 1954, Sur l'extension aux relations de quelques propriétés des ordres, Ann. Sci. École Norm. Sup., 71, 361, 10.24033/asens.1027 E. Hrushovski and J. Loveys, Locally modular strongly minimal sets, to appear. Hrushovski, 1987, Weakly normal groups E. Hrushovski, Interpreting groups in homogeneous geometries. Hrushovski, 1992, Unimodular strongly minimal sets, London J. Math, 46, 365 Hrushovski, 1989, Unidimensional theories Hrushovski, 1989, Almost orthogonal regular types, Ann. Pure Appl. Logic, 45, 139, 10.1016/0168-0072(89)90058-4 Hrushovski, 1989, A dichotomy theorem for regular types, Ann. Pure Appl. Logic, 45, 157, 10.1016/0168-0072(89)90059-6 E. Hrushovski and G. Srour, A non-equational stable theory, Preprint. Laskowski, 1986 Morley, 1965, Categoricity in power, Trans. Am. Math. Soc., 114, 514, 10.1090/S0002-9947-1965-0175782-0 Pillay, 1989, Stable theories, pseudoplanes and the number of countable models, Ann. Pure Appl. Logic, 43, 147, 10.1016/0168-0072(80)90002-0 Pillay, 1984, Closed sets and chain conditions in stable theories, J. Symbolic Logic, 49, 1350, 10.2307/2274284 Zilber, 1984, Strongly minimal countably categorical theories II–III, Siberian Math. J., 25, 396, 10.1007/BF00968979 Zilber, 1984, Strongly minimal countably categorical theories II–III, Siberian Math. J., 25, 559, 10.1007/BF00968893 Zilber, 1980, Strongly minimal countably categorical theories, Siberian Math. J., 21, 219, 10.1007/BF00968268