Synthesis of analogs of l-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells
Tài liệu tham khảo
Adibi, 1997, The oligopeptide transporter (Pept-1) in human intestine: biology and function, Gastroenterology, 113, 332, 10.1016/S0016-5085(97)70112-4
Bailey, 2000, How to make drugs orally active: a substrate template for peptide transporter PepT1, Angew. Chem., Int. Ed. Engl., 39, 505, 10.1002/(SICI)1521-3773(20000204)39:3<505::AID-ANIE505>3.0.CO;2-B
Beauchamp, 1985, Modifications on the heterocyclic base of acyclovir: syntheses and antiviral properties, J. Med. Chem., 28, 982, 10.1021/jm00146a002
Beauchamp, 1992, Amino acid ester prodrugs of acyclovir, Antiviral Chem. Chemother., 3, 157, 10.1177/095632029200300305
Crooks, 1994, Valaciclovir—a review of a promising new antiherpes agent, Antiviral Chem. Chemother., 5, 31
Dantzig, 1997, Oral absorption of β-lactams by intestinal peptide transport proteins, Adv. Drug Deliv. Rev., 23, 63, 10.1016/S0169-409X(96)00426-7
Ganapathy, 1998, Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2, Biochem. Biophys. Res. Commun., 246, 470, 10.1006/bbrc.1998.8628
Gao, 2000, Estimating intestinal mucosal permeation of compounds using Caco-2 cell monolayers, 721
Han, 1998, 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter, Pharm. Res., 15, 1154, 10.1023/A:1011919319810
Hanna, 1994, Sulfinosine congeners: synthesis and antitumor activity in mice of certain N9-alkylpurines and purine ribonucleosides, J. Med. Chem., 37, 177, 10.1021/jm00027a022
Hidalgo, 1989, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology, 96, 736, 10.1016/S0016-5085(89)80072-1
Matsumoto, 1988, A convenient synthesis of 9-(2-hydroxyethoxymethyl)guanine (Acyclovir) and related compounds, Chem. Pharm. Bull., 36, 1153, 10.1248/cpb.36.1153
de Miranda, 1983, Pharmacokinetics of acyclovir after intravenous and oral administration. Review, J. Antimicrob. Chemother., 12, 29, 10.1093/jac/12.suppl_B.29
Plagemann, 1990, Na+-dependent, active nucleoside transport in mouse spleen lymphocytes, leukaemia cells, fibroblasts and macrophages, but not in equivalent human or pig cells: dipyridamole enhances nucleoside salvage by cells with both active and facilitated transport, Biochim. Biophys. Acta, 1025, 32, 10.1016/0005-2736(90)90187-S
Sinko, 1998, Carrier-mediated intestinal absorption of valacyclovir, the l-valyl ester prodrug of acyclovir: 1. Interactions with peptides, organic anions and organic cations in rats, Biopharm. Drug Dispos., 19, 209, 10.1002/(SICI)1099-081X(199805)19:4<209::AID-BDD93>3.0.CO;2-O
Soul-Lawton, 1995, Absolute bioavailability and metabolic disposition of valaciclovir, the l-valyl ester of acyclovir, following oral administration to humans, Antimicrob. Agents Chemother., 39, 2759, 10.1128/AAC.39.12.2759
Temple, 1998, Peptide mimics as substrates for the intestinal peptide transporter, J. Biol. Chem., 273, 20, 10.1074/jbc.273.1.20
Walker, 1996, The intestinal peptide carrier: a potential transport system for small peptide derived drugs, Adv. Drug Deliv. Rev., 20, 33, 10.1016/0169-409X(95)00129-U
Ward, 1999, Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells, Biochim. Biophys. Acta, 1419, 15, 10.1016/S0005-2736(99)00045-0
de Vrueh, 1998, Transport of l-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, Caco-2, J. Pharmacol. Exp. Ther., 286, 1166