Density Estimation with Replicate Heteroscedastic Measurements

Julie McIntyre1, Leonard A. Stefanski2
1Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, USA
2Department of Statistics, North Carolina State University, Raleigh, USA

Tóm tắt

We present a deconvolution estimator for the density function of a random variable from a set of independent replicate measurements. We assume that measurements are made with normally distributed errors having unknown and possibly heterogeneous variances. The estimator generalizes well-known deconvoluting kernel density estimators, with error variances estimated from the replicate observations. We derive expressions for the integrated mean squared error and examine its rate of convergence as n → ∞ and the number of replicates is fixed. We investigate the finite-sample performance of the estimator through a simulation study and an application to real data.

Tài liệu tham khảo

Andrews G., Askey R., Roy R. (1999) Special functions. Cambridge University Press, Cambridge Bailey W.N. (1928) Products of generalized hypergeometric series. Proceedings of the London Mathematical Society 2: 242–254 Carroll R.J., Hall P. (1988) Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association 83: 1184–1186 Cook J.R., Stefanski L.A. (1994) Simulation–extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association 89: 1314–1328 Delaigle A. (2008) An alternative view of the deconvolution problem. Statistica Sinica 18: 1025–1045 Delaigle A., Gijbels I. (2004) Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Annals of the Institute of Statistical Mathematics 56: 19–47 Delaigle A., Hall P. (2008) Using SIMEX for smoothing-parameter choice in errors-in-variables problems. Journal of the American Statistical Association 103: 280–287 Delaigle A., Meister A. (2007) Nonparametric regression estimation in the heteroscedastic errors-in-variables problem. Journal of the American Statistical Association 102: 1416–1426 Delaigle A., Meister A. (2008) Density estimation with heteroscedastic error. Bernoulli 14: 562–569 Delaigle A., Hall P., Müller H. (2007) Accelerated convergence for nonparametric regression with coarsened predictors. Annals of Statistics 35: 2639–2653 Delaigle A., Hall P., Meister A. (2008) On Deconvolution with repeated measurements. Annals of Statistics 36: 665–685 Devroye L. (1989) Consistent deconvolution in density estimation. The Canadian Journal of Statistics 17: 235–239 Diggle P.J., Hall P. (1993) A Fourier approach to nonparametric deconvolution of a density estimate. Journal of the Royal Statistical Society, Series B 55: 523–531 Erdelyi A.E. (1953) Higher transcendental functions (Vol. 2). McGraw-Hill, New York Fan J. (1991a) Asymptotic normality for deconvolution kernel density estimators. Sankhya, Series A, Indian Journal of Statistics 53: 97–110 Fan J. (1991b) On the optimal rates of convergence for nonparametric deconvolution problems. Annals of Statistics 19: 1257–1272 Fan J. (1992) Deconvolution with supersmooth distributions. The Canadian Journal of Statistics 20: 155–169 Li T., Vuong Q. (1998) Nonparametric estimation of the measurement error model using multiple indicators. Journal of Multivariate Analysis 65: 139–165 Marron J.S. (1992) Bootstrap bandwidth selection. In: LePage R., Billard L. (eds) Exploring the limits of bootstrap. Wiley, New York McIntyre, J. (2003). Density deconvolution with replicate measurements and auxiliary data. Ph.D. Thesis, North Carolina State University. Meister A. (2006) Density estimation with normal measurement error with unknown variance. Statistica Sinica 16: 195–211 Neumann M.H. (2007) Deconvolution from panel data with unknown error distribution. Journal of Multivariate Analysis 98: 1955–1968 Patil P. (1996) A note on deconvolution density estimation. Statistics & Probability Letters 29: 79–84 Silverman B.W. (1986) Density estimation for statistics and data analysis. Chapman & Hall, New York Staudenmayer J., Ruppert D., Buonaccorsi J.P. (2008) Density estimation in the presence of heteroskedastic measurement error. Journal of the American Statistical Association 103: 726–736 Stefanski L.A. (1989) Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models. Communications in Statistics, Series A 18: 4335–4558 Stefanski L.A. (1990) Rates of convergence of some estimators in a class of deconvolution problems. Statistics & Probability Letters 9: 229–235 Stefanski L.A., Carroll R.J. (1990) Deconvoluting kernel density estimators. Statistics 21: 169–184 Stefanski L.A., Cook J.R. (1995) Simulation–extrapolation: the measurement error jackknife. Journal of the American Statistical Association 90: 1247–1256 Stefanski L.A., Novick S.J., Devanarayan V. (2005) Estimating a nonlinear function of a normal mean. Biometrika 92: 732–736 Wand M.P. (1998) Finite sample performance of deconvolving density estimators. Statistics & Probability Letters 37: 131–139 Watson G.S. (1983) Statistics on spheres. Wiley, New York