Crushing and densification of rapid prototyping polylactide foam: Meso-structural effect and a statistical constitutive model

Mechanics of Materials - Tập 127 - Trang 65-76 - 2018
Shilong Wang1, Zhijun Zheng1, Changfeng Zhu1, Yuanyuan Ding2, Jilin Yu1
1CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
2Mechanics and Materials Science Research Center, Ningbo University, Ningbo 315211, China

Tài liệu tham khảo

Alsalla, 2016, Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique, Mater. Sci. Eng., 699, 1, 10.1016/j.msea.2016.05.075 Andreassen, 2014, Design of manufacturable 3D extremal elastic microstructure, Mech. Mater., 69, 1, 10.1016/j.mechmat.2013.09.018 Avalle, 2007, Mechanical models of cellular solids: parameters identification from experimental tests, Int. J. Impact Eng., 34, 3, 10.1016/j.ijimpeng.2006.06.012 Bai, 2005, Statistical mesomechanics of solid, linking coupled multiple space and time scales, Appl. Mech. Rev., 58, 372, 10.1115/1.2048654 Banhart, 1998, Deformation characteristics of metal foams, J. Mater. Sci., 33, 1431, 10.1023/A:1004383222228 Barnes, 2014, Dynamic crushing of aluminum foams: part I–experiments, Int. J. Solids Struct., 51, 1631, 10.1016/j.ijsolstr.2013.11.019 Bastawros, 2000, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, J. Mech. Phys. Solids, 48, 301, 10.1016/S0022-5096(99)00035-6 Blazy, 2004, Deformation and fracture of aluminium foams under proportional and non-proportional multi-axial loading: statistical analysis and size effect, Int. J. Mech. Sci., 46, 217, 10.1016/j.ijmecsci.2004.03.005 Calladine, 1984, Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure, Int. J. Mech. Sci., 26, 689, 10.1016/0020-7403(84)90021-3 Chantarapanich, 2014, Fabrication of three-dimensional honeycomb structure for aeronautical applications using selective laser melting: a preliminary investigation, Rapid Prototyping J., 20, 551, 10.1108/RPJ-08-2011-0086 Corre, 2011, Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure, J. Supercrit. Fluids, 58, 177, 10.1016/j.supflu.2011.03.006 Degischer, 2002 Deshpande, 2001, Foam topology: bending versus stretching dominated architectures, Acta Mater., 49, 1035, 10.1016/S1359-6454(00)00379-7 Ding, 2016, Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model, Int. J. Appl. Mech., 8, 10.1142/S1758825116500575 Evans, 2001, The topological design of multifunctional cellular metals, Prog. Mater Sci., 46, 309, 10.1016/S0079-6425(00)00016-5 Gaitanaros, 2015, On the effect of relative density on the crushing and energy absorption of open-cell foams under impact, Int. J. Impact Eng., 82, 3, 10.1016/j.ijimpeng.2015.03.011 Gibson, 1997 Hanssen, 2002, Validation of constitutive models applicable to aluminium foams, Int. J. Mech. Sci., 44, 359, 10.1016/S0020-7403(01)00091-1 Hu, 2007, Constitutive relation of open–celled metal foams based on the mesoscopic behavior of random cells, Key Eng. Mater., 340, 403, 10.4028/www.scientific.net/KEM.340-341.403 Jang, 2009, On the crushing of aluminum open-cell foams: part I. Experiments, Int. J. Solids Struct., 46, 617, 10.1016/j.ijsolstr.2008.09.008 Jens, 2014, High-strength cellular ceramic composites with 3D microarchitecture, Proc. Natl. Acad. Sci., 111, 2453, 10.1073/pnas.1315147111 Kim, 2002, New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency, Thin-Walled Struct., 40, 311, 10.1016/S0263-8231(01)00069-6 Li, 2012, A phenomenological constitutive model of aluminum alloy foams at various strain rates, Int. J. Mod. Phys. B, 22, 6135, 10.1142/S0217979208051698 Liu, 2004, A phenomenological constitutive model for foams under large deformations, Polymer Eng. Sci., 44, 463, 10.1002/pen.20041 Liu, 2009, A numerical study on the rate sensitivity of cellular metals, Int. J. Solids Struct., 46, 3988, 10.1016/j.ijsolstr.2009.07.024 Maiti, 2016, 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response, Sci. Rep., 6 McCullough, 1999, Uniaxial stress–strain behaviour of aluminium alloy foams, Acta Mater., 47, 2323, 10.1016/S1359-6454(99)00128-7 Merrett, 2013, The blast and impact loading of aluminium foam, Mater. Des., 44, 311, 10.1016/j.matdes.2012.08.016 Mu, 2010, Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams, Mater. Des., 31, 1567, 10.1016/j.matdes.2009.09.044 Okabe, 1992 Roberts, 2002, Elastic properties of model random three-dimensional open-cell solids, J. Mech. Phys. Solids, 50, 33, 10.1016/S0022-5096(01)00056-4 Rusch, 1969, Load-compression behavior of flexible foams, J. Appl. Polym. Sci., 13, 2297, 10.1002/app.1969.070131106 Schraad, 2006, A stochastic constitutive model for disordered cellular materials: finite-strain uni-axial compression, Int. J. Solids Struct., 43, 3542, 10.1016/j.ijsolstr.2005.05.018 Sun, 2016, Determination of the constitutive relation and critical condition for the shock compression of cellular solids, Mech. Mater., 99, 26, 10.1016/j.mechmat.2016.04.004 Tan, 2005, Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations, J. Mech. Phys. Solids, 53, 2174, 10.1016/j.jmps.2005.05.007 Tymrak, 2014, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Mater. Des., 58, 242, 10.1016/j.matdes.2014.02.038 Wang, 2011, A further study on the energy absorption capability of thin-walled tubes under axial crushing Wang, 2017, Dynamic material parameters of closed-cell foams under high-velocity impact, Int. J. Impact Eng., 99, 111, 10.1016/j.ijimpeng.2016.09.013 Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 9, 293, 10.1115/1.4010337 Weisstein Yan, 1996, A review of rapid prototyping technologies and systems, Comput. Aided Des., 28, 307, 10.1016/0010-4485(95)00035-6 Yang, 2017, Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock mode, Mater. Sci. Eng., 680, 411, 10.1016/j.msea.2016.11.010 Zaretsky, 1995, Compressive stress-strain relations and shock Hugoniot curves of flexible foams, J. Eng. Mater. Technol. (Trans. ASME), 117, 278, 10.1115/1.2804540 Zheng, 2014, Dynamic stress-strain states for metal foams using a 3D cellular model, J. Mech. Phys. Solids, 72, 93, 10.1016/j.jmps.2014.07.013 Zheng, 2005, Dynamic crushing of 2D cellular structures: a finite element study, Int. J. Impact Eng., 32, 650, 10.1016/j.ijimpeng.2005.05.007 Zhu, 2002, Effects of cell irregularity on the high strain compression of open-cell foams, Acta Mater., 50, 1041, 10.1016/S1359-6454(01)00402-5