Crushing and densification of rapid prototyping polylactide foam: Meso-structural effect and a statistical constitutive model
Tài liệu tham khảo
Alsalla, 2016, Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique, Mater. Sci. Eng., 699, 1, 10.1016/j.msea.2016.05.075
Andreassen, 2014, Design of manufacturable 3D extremal elastic microstructure, Mech. Mater., 69, 1, 10.1016/j.mechmat.2013.09.018
Avalle, 2007, Mechanical models of cellular solids: parameters identification from experimental tests, Int. J. Impact Eng., 34, 3, 10.1016/j.ijimpeng.2006.06.012
Bai, 2005, Statistical mesomechanics of solid, linking coupled multiple space and time scales, Appl. Mech. Rev., 58, 372, 10.1115/1.2048654
Banhart, 1998, Deformation characteristics of metal foams, J. Mater. Sci., 33, 1431, 10.1023/A:1004383222228
Barnes, 2014, Dynamic crushing of aluminum foams: part I–experiments, Int. J. Solids Struct., 51, 1631, 10.1016/j.ijsolstr.2013.11.019
Bastawros, 2000, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, J. Mech. Phys. Solids, 48, 301, 10.1016/S0022-5096(99)00035-6
Blazy, 2004, Deformation and fracture of aluminium foams under proportional and non-proportional multi-axial loading: statistical analysis and size effect, Int. J. Mech. Sci., 46, 217, 10.1016/j.ijmecsci.2004.03.005
Calladine, 1984, Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure, Int. J. Mech. Sci., 26, 689, 10.1016/0020-7403(84)90021-3
Chantarapanich, 2014, Fabrication of three-dimensional honeycomb structure for aeronautical applications using selective laser melting: a preliminary investigation, Rapid Prototyping J., 20, 551, 10.1108/RPJ-08-2011-0086
Corre, 2011, Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure, J. Supercrit. Fluids, 58, 177, 10.1016/j.supflu.2011.03.006
Degischer, 2002
Deshpande, 2001, Foam topology: bending versus stretching dominated architectures, Acta Mater., 49, 1035, 10.1016/S1359-6454(00)00379-7
Ding, 2016, Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model, Int. J. Appl. Mech., 8, 10.1142/S1758825116500575
Evans, 2001, The topological design of multifunctional cellular metals, Prog. Mater Sci., 46, 309, 10.1016/S0079-6425(00)00016-5
Gaitanaros, 2015, On the effect of relative density on the crushing and energy absorption of open-cell foams under impact, Int. J. Impact Eng., 82, 3, 10.1016/j.ijimpeng.2015.03.011
Gibson, 1997
Hanssen, 2002, Validation of constitutive models applicable to aluminium foams, Int. J. Mech. Sci., 44, 359, 10.1016/S0020-7403(01)00091-1
Hu, 2007, Constitutive relation of open–celled metal foams based on the mesoscopic behavior of random cells, Key Eng. Mater., 340, 403, 10.4028/www.scientific.net/KEM.340-341.403
Jang, 2009, On the crushing of aluminum open-cell foams: part I. Experiments, Int. J. Solids Struct., 46, 617, 10.1016/j.ijsolstr.2008.09.008
Jens, 2014, High-strength cellular ceramic composites with 3D microarchitecture, Proc. Natl. Acad. Sci., 111, 2453, 10.1073/pnas.1315147111
Kim, 2002, New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency, Thin-Walled Struct., 40, 311, 10.1016/S0263-8231(01)00069-6
Li, 2012, A phenomenological constitutive model of aluminum alloy foams at various strain rates, Int. J. Mod. Phys. B, 22, 6135, 10.1142/S0217979208051698
Liu, 2004, A phenomenological constitutive model for foams under large deformations, Polymer Eng. Sci., 44, 463, 10.1002/pen.20041
Liu, 2009, A numerical study on the rate sensitivity of cellular metals, Int. J. Solids Struct., 46, 3988, 10.1016/j.ijsolstr.2009.07.024
Maiti, 2016, 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response, Sci. Rep., 6
McCullough, 1999, Uniaxial stress–strain behaviour of aluminium alloy foams, Acta Mater., 47, 2323, 10.1016/S1359-6454(99)00128-7
Merrett, 2013, The blast and impact loading of aluminium foam, Mater. Des., 44, 311, 10.1016/j.matdes.2012.08.016
Mu, 2010, Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams, Mater. Des., 31, 1567, 10.1016/j.matdes.2009.09.044
Okabe, 1992
Roberts, 2002, Elastic properties of model random three-dimensional open-cell solids, J. Mech. Phys. Solids, 50, 33, 10.1016/S0022-5096(01)00056-4
Rusch, 1969, Load-compression behavior of flexible foams, J. Appl. Polym. Sci., 13, 2297, 10.1002/app.1969.070131106
Schraad, 2006, A stochastic constitutive model for disordered cellular materials: finite-strain uni-axial compression, Int. J. Solids Struct., 43, 3542, 10.1016/j.ijsolstr.2005.05.018
Sun, 2016, Determination of the constitutive relation and critical condition for the shock compression of cellular solids, Mech. Mater., 99, 26, 10.1016/j.mechmat.2016.04.004
Tan, 2005, Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations, J. Mech. Phys. Solids, 53, 2174, 10.1016/j.jmps.2005.05.007
Tymrak, 2014, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Mater. Des., 58, 242, 10.1016/j.matdes.2014.02.038
Wang, 2011, A further study on the energy absorption capability of thin-walled tubes under axial crushing
Wang, 2017, Dynamic material parameters of closed-cell foams under high-velocity impact, Int. J. Impact Eng., 99, 111, 10.1016/j.ijimpeng.2016.09.013
Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 9, 293, 10.1115/1.4010337
Weisstein
Yan, 1996, A review of rapid prototyping technologies and systems, Comput. Aided Des., 28, 307, 10.1016/0010-4485(95)00035-6
Yang, 2017, Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock mode, Mater. Sci. Eng., 680, 411, 10.1016/j.msea.2016.11.010
Zaretsky, 1995, Compressive stress-strain relations and shock Hugoniot curves of flexible foams, J. Eng. Mater. Technol. (Trans. ASME), 117, 278, 10.1115/1.2804540
Zheng, 2014, Dynamic stress-strain states for metal foams using a 3D cellular model, J. Mech. Phys. Solids, 72, 93, 10.1016/j.jmps.2014.07.013
Zheng, 2005, Dynamic crushing of 2D cellular structures: a finite element study, Int. J. Impact Eng., 32, 650, 10.1016/j.ijimpeng.2005.05.007
Zhu, 2002, Effects of cell irregularity on the high strain compression of open-cell foams, Acta Mater., 50, 1041, 10.1016/S1359-6454(01)00402-5