Effect of homonuclear boron bonds in the adsorption of DNA nucleobases on boron nitride nanosheets
Tài liệu tham khảo
Pakdel, 2014, Nano boron nitride flatland, Chem. Soc. Rev., 43, 934, 10.1039/C3CS60260E
Li, 2020, 2D material chemistry: graphdiyne-based biochemical sensing, Chem. Res. Chin. Univ., 36, 622, 10.1007/s40242-020-0181-4
Zhang, 2016, Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities, Angew. Int. Ed. Chem., 55, 1666, 10.1002/anie.201507568
Bhuvaneswari, 2020, Interaction study of amino acid on novel Kagome phosphorene nanotube – a DFT outlook, Comp. Theor. Chem., 1186, 112903, 10.1016/j.comptc.2020.112903
Bhuvaneswari, 2020, Physisorption of propane and butane vapors on novel Kagome antimonene sheets – a first-principles perception, Chem. Phys. Lett., 754, 137693, 10.1016/j.cplett.2020.137693
Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A., 102, 10453, 10.1073/pnas.0502848102
Li, 2009, Thickness-dependent bending modulus of hexagonal boron nitride nanosheets, Nanotechnology, 20, 385707, 10.1088/0957-4484/20/38/385707
Mateti, 2018, Biocompatibility of boron nitride nanosheets, Nano Res., 11, 334, 10.1007/s12274-017-1635-y
Sen, 2018, One-step synthesis of hexagonal boron nitrides, their crystallinity and biodegradation, Front. Bioeng. Biotechnol., 6, 83, 10.3389/fbioe.2018.00083
Kubota, 2007, Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science, 317, 932, 10.1126/science.1144216
Dahm, 2005, Friedrich Miescher and the discovery of DNA, Dev. Biol., 278, 274, 10.1016/j.ydbio.2004.11.028
Dahm, 2008, Discovering DNA: Friedrich Miescher and the early years of nucleic acid research, Hum. Genet., 122, 565, 10.1007/s00439-007-0433-0
Lee, 2013, Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations, J. Phys. Chem. C, 117, 13435, 10.1021/jp402403f
Vovusha, 2018, Controlling the orientation of nucleobases by dipole moment interaction with graphene/h-BN interfaces, RSC Adv., 8, 6427, 10.1039/C7RA11664K
Ding, 2013, Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking, Phys. Chem. Chem. Phys., 15, 10767, 10.1039/c3cp50912e
Lin, 2011, Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study, Phys. Chem. Chem. Phys., 13, 12225, 10.1039/c1cp20783k
Zhang, 2016, DNA sequencing by hexagonal boron nitride nanopore: a computational study, Nanomaterials, 6, 111, 10.3390/nano6060111
Dabhi, 2018, Nucleobases-decorated boron nitride nanoribbons for electrochemical biosensing: a dispersion-corrected DFT study, Phys. Chem. Chem. Phys., 20, 8943, 10.1039/C7CP08145F
Liu, 2013, Boron nitride nanopores: highly sensitive DNA single-molecule detectors, Adv. Mater., 25, 4549, 10.1002/adma.201301336
Sadeghi, 2018, Adsorption of DNA/RNA nucleobases onto single-layer MoS2 and Li-doped MoS2: a dispersion-corrected DFT study, Appl. Surf. Sci., 434, 176, 10.1016/j.apsusc.2017.10.162
Srimathi, 2018, Detection of nucleobases using 2D germanane nanosheet: a first-principles study, Comp. Theor. Chem., 1130, 68, 10.1016/j.comptc.2018.03.011
Vovusha, 2013, Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes, J. Phys. Chem. Lett., 4, 3710, 10.1021/jz401929h
Jin, 2016, Au-modified monolayer MoS2 sensor for DNA detection, J. Phys. Chem. C, 120, 11204, 10.1021/acs.jpcc.6b01193
Hakan Gürel, 2017, Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study, Mater. Res. Express, 4
Hassan Mir, 2019, Boron–carbon–nitride sheet as a novel surface for biological applications: insights from density functional theory, ACS Omega, 4, 3732, 10.1021/acsomega.8b03454
Lu, 2017, Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing, Langmuir, 33, 630, 10.1021/acs.langmuir.6b04502
Yang, 2013, Nano-graphene in biomedicine: theranostic applications, Chem. Soc. Rev., 42, 530, 10.1039/C2CS35342C
Chigo Anota, 2017, Design of the magnetic homonuclear bonds boron nitride nanosheets using DFT methods, J. Mol. Graph. Model., 74, 135, 10.1016/j.jmgm.2017.03.019
Tsuneda, 2014
Frisch, 2013
Zeng, 2010, “White Graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping, Nano Lett., 10, 5049, 10.1021/nl103251m
Heyd, 2004, Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional, J. Chem. Phys., 121, 1187, 10.1063/1.1760074
Heyd, 2004, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys., 120, 7274, 10.1063/1.1668634
Hehre, 1972, Self-consistent molecular-orbital methods. XII. Futher extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys., 56, 2257, 10.1063/1.1677527
Krishnan, 1980, Self consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 72, 650, 10.1063/1.438955
Geerlings, 2003, Conceptual density functional theory, Chem. Rev., 103, 1793, 10.1021/cr990029p
Gálvan, 1988, Chemical reactivity in spin-polarized density functional theory, J. Phys. Chem., 92, 6470, 10.1021/j100333a056
Lu, 2016, Electron work function–a promising guiding parameter for material design, Sci. Rep., 6, 24366, 10.1038/srep24366
Bergveld, 1998, Theory and application of the material work function for chemical sensors based on the field effect principle, Meas. Sci. Technol., 9, 1801, 10.1088/0957-0233/9/11/003
Meyer, 2003, Interactions with aromatic rings in chemical and biological recognition, Angew. Chem. Int. Ed. Eng., 42, 1210, 10.1002/anie.200390319
Weinhold, 2016, What is NBO analysis and how is it useful?, Int. Rev. Phys. Chem., 35, 399, 10.1080/0144235X.2016.1192262
Denis, 2019, F Iribarne, comparative study of the chemical reactivity of graphene and boron nitride sheets, Comp. Theor. Chem., 1164, 112538, 10.1016/j.comptc.2019.112538
Denis, 2020, Reduction chemistry of hexagonal boron nitride sheets and graphene: a comparative study on the effect of alkali atom doping on their chemical reactivity, New J. Chem., 44, 5725, 10.1039/D0NJ00414F
Li, 2006
Walch, 2003, Model calculations of the electron affinities and ionization potentials of DNA, Chem. Phys. Lett., 374, 496, 10.1016/S0009-2614(03)00735-8
Roca-Sanjuán, 2008, Ab initio determination of the electron affinities of DNA and RNA nucleobases, J. Chem. Phys., 129, 10.1063/1.2958286
Miertuš, 1981, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys., 55, 117, 10.1016/0301-0104(81)85090-2
Miertuš, 1982, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem. Phys., 65, 239, 10.1016/0301-0104(82)85072-6
Pascual-ahuir, 1994, GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface, J. Comput. Chem., 15, 1127, 10.1002/jcc.540151009
Si, 2014, Intrinsic ferromagnetism in hexagonal boron nitride nanosheets, J. Chem. Phys., 140, 204701, 10.1063/1.4879055
Feng, 2016, Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs, Int. J. Nanomedicine, 11, 4573, 10.2147/IJN.S110689
Barranco, 2007, Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States), Cancer Causes Control, 18, 71, 10.1007/s10552-006-0077-8
Xie, 2019, Charge-dependent regulation in DNA adsorption on 2D clay minerals, Sci. Rep., 9, 6808, 10.1038/s41598-019-41093-5
Sinthika, 2015, Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study, Sci. Rep., 5, 17460, 10.1038/srep17460
Choi, 2011, Ambient carbon dioxide capture by boron-rich boron nitride nanotube, J. Am. Chem. Soc., 133, 2084, 10.1021/ja1101807
Rodríguez Juárez, 2019, Stability, electronic and optical properties of the boron nitride cage (B47N53) from quantum mechanical calculations, Phys. E., 111, 118, 10.1016/j.physe.2019.02.017
Rodríguez Juárez, 2020, The boron nitride (B116N124) fullerene: stability and electronic properties from DFT simulations, Chem. Phys. Lett., 741, 137097, 10.1016/j.cplett.2020.137097
Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5
Nozaki, 1996, Structural stability of BC2N, J. Phys. Chem. Solids, 57, 41, 10.1016/0022-3697(95)00088-7
Dharani, 2018, Nucleobases adsorption studies on silicane layer: a first-principles investigation, J. Mol. Graph. Model., 85, 48, 10.1016/j.jmgm.2018.07.001
Borhani, 2019, Structural and electronic properties of adsorbed nucleobases on Si-doped hexagonal boron nitride nanoflake: a computational study, Struct. Chem., 30, 1277, 10.1007/s11224-019-1280-z
Lu, 2013, Aqueous soluble boron nitride nanosheets via anionic compound-assisted exfoliation, Mater. Express, 3, 144, 10.1166/mex.2013.1110
Guan, 2018, pH-switchable water-soluble boron nitride nanotubes, ChemSelect Comm., 3, 9308
