Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism

Advanced Powder Technology - Tập 29 - Trang 1119-1127 - 2018
Masaya Muto1, Kohei Yuasa1, Ryoichi Kurose1
1Department of Mechanical Engineering and Science, Kyoto University, Kyoto-daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

Tài liệu tham khảo

Kurose, 2003, Large eddy simulation of a solid-fuel jet flame, Combust. Flame, 135, 1, 10.1016/S0010-2180(03)00141-X Yamamoto, 2011, Large eddy simulation of a pulverized coal jet flame ignited by a preheated gas flow, Proc. Combust. Inst., 33, 1771, 10.1016/j.proci.2010.05.113 Chen, 2012, Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study, Energy Fuels, 26, 4783, 10.1021/ef3006993 Franchetti, 2013, Large Eddy simulation of a pulverized coal jet flame, Proc. Combust. Inst., 34, 2419, 10.1016/j.proci.2012.07.056 Stein, 2013, Towards comprehensive coal combustion modelling for LES, Flow Turbul. Combust., 90, 859, 10.1007/s10494-012-9423-y Rabaçal, 2014, Large eddy simulation of coal combustion in a large-scale laboratory furnace, Proc. Combust. Inst., 35, 3609, 10.1016/j.proci.2014.06.023 Olenik, 2015, LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1, Proc. Combust. Inst., 35, 2819, 10.1016/j.proci.2014.06.149 Muto, 2015, Large-eddy simulation of pulverized coal jet flame–effect of oxygen concentration on NOx formation, Fuel, 142, 152, 10.1016/j.fuel.2014.10.069 Luo, 2012, Direct numerical simulation of pulverized coal combustion in a hot vitiated co-flow, Energy Fuels, 26, 6128, 10.1021/ef301253y Hara, 2015, Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism, Combust. Flame, 162, 4391, 10.1016/j.combustflame.2015.07.027 Brosh, 2015, Numerical investigation of localised forced ignition of pulverised coal particle-laden mixtures: a Direct Numerical Simulation (DNS) analysis, Fuel, 145, 50, 10.1016/j.fuel.2014.12.006 Muto, 2016, A DNS study on effect of coal particle swelling due to devolatilization on pulverized coal jet flame, Fuel, 184, 749, 10.1016/j.fuel.2016.07.070 Muto, 2017, Numerical simulation of ignition in pulverized coal combustion with detailed chemical reaction mechanism, Fuel, 190, 136, 10.1016/j.fuel.2016.11.029 Adams, 1995, Modeling effects of soot and turbulence-radiation coupling on radiative transfer in turbulent gaseous combustion, Combust. Sci. Technol., 109, 121140, 10.1080/00102209508951898 Lau, 1993, The impact of soot on the combustion characteristics of coal particles of various types, Combust. Flame, 95, 1, 10.1016/0010-2180(93)90048-8 Fletcher, 1997, Soot in coal combustion systems, Prog. Energy Combust. Sci., 23, 283301, 10.1016/S0360-1285(97)00009-9 Brown, 1998, Modeling soot derived from pulverized coal, Energy Fuel, 12, 74557, 10.1021/ef9702207 Wijayanta, 2012, Numerical investigation on combustion of coal volatiles under various O2/CO2 mixtures using a detailed mechanism with soot formation, Fuel, 93, 670, 10.1016/j.fuel.2011.10.003 Xu, 2017, Transient model for soot formation during the combustion of single coal particles, Proc. Combust. Inst., 36, 2131, 10.1016/j.proci.2016.06.146 Xu, 2017, Predictions of soot formation and its effect on the flame temperature of a pulverized coal-air turbulent jet, Fuel, 194, 297, 10.1016/j.fuel.2017.01.032 Hayashi, 2013, Soot formation characteristics in a lab-scale turbulent pulverized coal flame with simultaneous planar measurements of laser induced incandescence of soot and Mie scattering of pulverized coal, Proc. Combust. Inst., 34, 2435, 10.1016/j.proci.2012.10.002 Fiveland, 1984, Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures, J. Heat Transf., 106, 699, 10.1115/1.3246741 Smith, 1982, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transf., 104, 602, 10.1115/1.3245174 Kitano, 2014, Evaporation and combustion of multicomponent fuel droplets, Fuel, 136, 219, 10.1016/j.fuel.2014.07.045 Kitano, 2015, Effect of pressure oscillations on flashback characteristics in a turbulent channel flow, Energy Fuels, 29, 6815, 10.1021/acs.energyfuels.5b01687 Crowe, 1977, The particle-source-in cell (PSI-CELL) model for gas-droplet flows, J. Fluids Eng., 99, 325, 10.1115/1.3448756 Grant, 1989, Chemical model of coal devolatilization using percolation lattice statistics, Energy Fuels, 3, 175, 10.1021/ef00014a011 Field, 1969, Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 K and 2000 K, Combust. Flame, 13, 237, 10.1016/0010-2180(69)90002-9 Kurose, 2004, Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 K and 2000 K, Fuel, 83, 1777, 10.1016/j.fuel.2004.02.021 Breitbach, 1994, Laminar counterflow mixing of acetylene into hot combustion products, Proc. Combust. Inst., 25, 13571364, 10.1016/S0082-0784(06)80778-2 R.J. Hall, MD. Smooke, M.B. Colket, Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, Combustion Science and Technology Book Series, Gordon and Breach, 1997. Puri, 1993, Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame, Combust. Flame, 92, 320, 10.1016/0010-2180(93)90043-3 Frenklach, 1985, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene, Proc. Combust. Inst., 20, 887, 10.1016/S0082-0784(85)80578-6 Harris, 1988, Formation of small aromatic molecules in a sooting ethylene flame, Combust. Flame, 72, 91, 10.1016/0010-2180(88)90099-5 Neoh, 1985, Effect of oxidation on the physical structure of soot, Symp. (Int.) Combust., 20, 951, 10.1016/S0082-0784(85)80584-1 Lee, 1962, On the rate of combustion of soot in a laminar soot flame, Combust. Flame, 6, 137, 10.1016/0010-2180(62)90082-2 Wen, 2003, Modeling soot formation in turbulent kerosene/air jet diffusion flames, Combust. Flame, 135, 323, 10.1016/S0010-2180(03)00179-2 Wornat, 1987, Changes in the degree of substitution of polycyclic aromatic compounds from pyrolysis of a high-volatile bituminous coal, Energy Fuels, 1, 431, 10.1021/ef00005a010 Watanabe, 2008, Effects of radiation on spray flame characteristics and soot formation, Combust. Flame, 152, 2, 10.1016/j.combustflame.2007.07.021 Spalart, 1988, Direct simulation of a turbulent boundary layer up to Reθ=1410, J. Fluid Mech., 187, 61, 10.1017/S0022112088000345 Kim, 1985, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308, 10.1016/0021-9991(85)90148-2 Narayanaswamy, 2010, A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame, 157, 1879, 10.1016/j.combustflame.2010.07.009 Brown, 1989, VODE: a variable-coefficient ODE solver, SIAM J. Sci. Stat. Comput., 10, 1038, 10.1137/0910062