Polyamine function in archaea and bacteria

Journal of Biological Chemistry - Tập 293 - Trang 18693-18701 - 2018
Anthony J. Michael1
1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390

Tài liệu tham khảo

Weiss, 2016, The physiology and habitat of the last universal common ancestor, Nat. Microbiol, 1, 10.1038/nmicrobiol.2016.116 Michael, 2016, Biosynthesis of polyamines and polyamine-containing molecules, Biochem. J, 473, 2315, 10.1042/BCJ20160185 Kanjee, 2011, The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition, Biochemistry, 50, 9388, 10.1021/bi201161k Griswold, 2006, Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159, J. Bacteriol, 188, 834, 10.1128/JB.188.3.834-841.2006 Woese, 1977, Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. U.S.A, 74, 5088, 10.1073/pnas.74.11.5088 Spang, 2017, Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life, Science, 357, 10.1126/science.aaf3883 Adam, 2017, The growing tree of Archaea: new perspectives on their diversity, evolution and ecology, ISME J, 11, 2407, 10.1038/ismej.2017.122 Castelle, 2018, Major new microbial groups expand diversity and alter our understanding of the tree of life, Cell, 172, 1181, 10.1016/j.cell.2018.02.016 Chen, 1984, Lack of detectable polyamines in an extremely halophilic bacterium, Biochem. Biophys. Res. Commun, 124, 423, 10.1016/0006-291X(84)91570-5 Kamekura, 1986, Polyamines in moderately and extremely halophilic bacteria, Biochim. Biophys. Acta, 880, 204, 10.1016/0304-4165(86)90081-4 Hamana, 1985, Polyamines in photosynthetic and extreme-halophilic archaebacteria, J. Biochem, 97, 1653, 10.1093/oxfordjournals.jbchem.a135223 Hamana, 2003, Cellular polyamines of the acidophilic, thermophilic and thermoacidophilic archaebacteria, Acidilobus, Ferroplasma, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodiscus and Vulcanisaeta, J. Gen. Appl. Microbiol, 49, 287, 10.2323/jgam.49.287 Scherer, 1983, Distribution of polyamines in methanogenic bacteria, J. Bacteriol, 154, 1315, 10.1128/jb.154.3.1315-1322.1983 Bartig, 1990, The unique posttranslational modification leading to deoxyhypusine or hypusine is a general feature of the archaebacterial kingdom, Syst. Appl. Microbiol, 13, 112, 10.1016/S0723-2020(11)80156-6 Park, 1981, Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor, Proc. Natl. Acad. Sci. U.S.A, 78, 2869, 10.1073/pnas.78.5.2869 Cooper, 1983, Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D, Proc. Natl. Acad. Sci. U.S.A, 80, 1854, 10.1073/pnas.80.7.1854 Park, 2006, Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme, Proc. Natl. Acad. Sci. U.S.A, 103, 51, 10.1073/pnas.0509348102 Gutierrez, 2013, eIF5A promotes translation of polyproline motifs, Mol. Cell, 51, 35, 10.1016/j.molcel.2013.04.021 Sasaki, 1996, Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae, FEBS Lett, 384, 151, 10.1016/0014-5793(96)00310-9 Nishimura, 2012, Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development, Amino Acids, 42, 703, 10.1007/s00726-011-0986-z Nguyen, 2013, Allosteric activation of trypanosomatid deoxyhypusine synthase by a catalytically dead paralog, J. Biol. Chem, 288, 15256, 10.1074/jbc.M113.461137 Chawla, 2010, Identification and characterization of a novel deoxyhypusine synthase in Leishmania donovani, J. Biol. Chem, 285, 453, 10.1074/jbc.M109.048850 Schumann, 1989, Archaebacterial protein contains hypusinme a unique amino acid characteristic for eukaryotic translation initiation factor 4D, Syst. Appl. Microbiol, 11, 103, 10.1016/S0723-2020(89)80047-5 Bartig, 1992, The archaebacterial hypusine-containing protein: structural features suggest common ancestry with eukaryotic translation initiation factor 5A, Eur. J. Biochem, 204, 751, 10.1111/j.1432-1033.1992.tb16690.x Jansson, 2000, Cell cycle arrest in archaea by the hypusination inhibitor N1-guanyl-1,7-diaminoheptane, J. Bacteriol, 182, 1158, 10.1128/JB.182.4.1158-1161.2000 Prunetti, 2016, Deciphering the translation initiation factor 5A modification pathway in halophilic archaea, Archaea, 2016, 10.1155/2016/7316725 Morimoto, 2010, Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis, J. Bacteriol, 192, 4991, 10.1128/JB.00279-10 Park, 2003, Reversal of the deoxyhypusine synthesis reaction: generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase, J. Biol. Chem, 278, 32683, 10.1074/jbc.M304247200 Chien, 2000, Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina barkeri 227, J. Bacteriol, 182, 3247, 10.1128/JB.182.11.3247-3253.2000 Burnat, 2018, Homospermidine biosynthesis in the cyanobacterium Anabaena requires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth, Mol. Microbiol, 109, 763, 10.1111/mmi.14006 Mandal, 2010, Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosine, Proc. Natl. Acad. Sci. U.S.A, 107, 2872, 10.1073/pnas.0914869107 Ikeuchi, 2010, Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea, Nat. Chem. Biol, 6, 277, 10.1038/nchembio.323 Blaby, 2010, Towards a systems approach in the genetic analysis of archaea: accelerating mutant construction and phenotypic analysis in Haloferax volcanii, Archaea, 2010, 10.1155/2010/426239 Suzuki, 2014, Convergent evolution of AUA decoding in bacteria and archaea, RNA Biol, 11, 1586, 10.4161/15476286.2014.992281 Fukuda, 2008, Agmatine is essential for the cell growth of Thermococcus kodakaraensis, FEMS Microbiol. Lett, 287, 113, 10.1111/j.1574-6968.2008.01303.x Hamana, 1995, Ubiquitous occurrence of agmatine as the major polyamine within extremely halophilic archaebacteria, J. Gen. Appl. Microbiol, 41, 153, 10.2323/jgam.41.153 Muramatsu, 1988, A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli, J. Biol. Chem, 263, 9261, 10.1016/S0021-9258(19)76533-8 Soma, 2003, An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA, Mol. Cell, 12, 689, 10.1016/S1097-2765(03)00346-0 Graham, 2002, Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis, J. Biol. Chem, 277, 23500, 10.1074/jbc.M203467200 Giles, 2008, Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme, J. Biol. Chem, 283, 25829, 10.1074/jbc.M802674200 Okada, 2014, Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles, J. Bacteriol, 196, 1866, 10.1128/JB.01515-14 Nishio, 2018, Branched-chain polyamine found in hyperthermophiles induces unique temperature-dependent structural changes in genome-size DNA, Chemphyschem, 19, 2299, 10.1002/cphc.201800396 Terui, 2005, Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus, Biochem. J, 388, 427, 10.1042/BJ20041778 Oren, 2008, Microbial life at high salt concentrations: phylogenetic and metabolic diversity, Saline Systems, 4, 2, 10.1186/1746-1448-4-2 Stewart, 2012, Growing unculturable bacteria, J. Bacteriol, 194, 4151, 10.1128/JB.00345-12 Hamana, 1992, Polyamines as a chemotaxonomic marker in bacterial systematics, Crit. Rev. Microbiol, 18, 261, 10.3109/10408419209113518 Hosoya, 2006, Polyamine analysis within the thirteen eubacterial phyla Acidobacteria, Actinobacteria, Chlorobi, Chloroflexi, Chrysiogenetes, Deferribacteres, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Nitrosprae, Planctomycetes and Verrucomicrobia, Microbiol. Cult. Coll, 22, 21 Michael, 2016, Polyamines in eukaryotes, bacteria, and archaea, J. Biol. Chem, 291, 14896, 10.1074/jbc.R116.734780 Rosenthal, 1962, Metabolism of polyamines by Staphylococcus, J. Bacteriol, 84, 859, 10.1128/jb.84.4.859-863.1962 Rajkovic, 2017, Elongation factor P and the control of translation elongation, Annu. Rev. Microbiol, 71, 117, 10.1146/annurev-micro-090816-093629 Kamio, 1981, Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium, J. Bacteriol, 145, 122, 10.1128/jb.145.1.122-128.1981 Kamio, 1986, Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium, J. Biol. Chem, 261, 6585, 10.1016/S0021-9258(19)84602-1 Hirao, 2000, Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica, J. Bacteriol, 182, 1154, 10.1128/JB.182.4.1154-1157.2000 Hamana, 2002, Covalently linked polyamines in the cell wall peptidoglycan of Selenomonas, Anaeromusa, Dendrosporobacter, Acidaminococcus and Anaerovibrio belonging to the Sporomusa subbranch, J. Gen. Appl. Microbiol, 48, 177, 10.2323/jgam.48.177 Herbst, 1949, Putrescine and related compounds as growth factors for Hemophilus parainfluenzae 7991, J. Biol. Chem, 181, 47, 10.1016/S0021-9258(18)56624-2 Herbst, 1955, An analysis of the putrescine requirement of Hemophilus parainfluenzae, J. Biol. Chem, 214, 175, 10.1016/S0021-9258(18)70956-3 Martin, 1952, Putrescine as a growth requirement for Neisseria, Science, 116, 483, 10.1126/science.116.3018.483 Tabor, 1978, Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis, J. Biol. Chem, 253, 3671, 10.1016/S0021-9258(17)34853-6 Chattopadhyay, 2009, Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis, J. Bacteriol, 191, 5549, 10.1128/JB.00381-09 Linderoth, 1983, Structural specificity of the triamines sym-homospermidine and aminopropylcadaverine in stimulating growth of spermidine auxotrophs of Escherichia coli, Biochem. Biophys. Res. Commun, 117, 616, 10.1016/0006-291X(83)91245-7 Yoshida, 2016, Effect of spermidine analogues on cell growth of Escherichia coli polyamine requiring mutant MA261, PLoS One, 11, 10.1371/journal.pone.0159494 Nakada, 2003, Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway, Microbiology, 149, 707, 10.1099/mic.0.26009-0 Hanfrey, 2011, Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota, J. Biol. Chem, 286, 43301, 10.1074/jbc.M111.307835 Kim, 2016, The essential role of spermidine in growth of Agrobacterium tumefaciens is determined by the 1,3-diaminopropane moiety, ACS Chem. Biol, 11, 491, 10.1021/acschembio.5b00893 Lowe-Power, 2018, Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease, Environ. Microbiol, 20, 1330, 10.1111/1462-2920.14020 Li, 2016, Functional identification of putrescine C- and N-hydroxylases, ACS Chem. Biol, 11, 2782, 10.1021/acschembio.6b00629 Bontemps-Gallo, 2018, Borrelia burgdorferi genes, bb0639–0642, encode a putative putrescine/spermidine transport system, PotABCD, that is spermidine specific and essential for cell survival, Mol. Microbiol, 108, 350, 10.1111/mmi.13940 Oshima, 2010, Enigmas of biosyntheses of unusual polyamines in an extreme thermophile, Thermus thermophilus, Plant Physiol. Biochem, 48, 521, 10.1016/j.plaphy.2010.03.011 Ohnuma, 2005, N1-Aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus, J. Biol. Chem, 280, 30073, 10.1074/jbc.M413332200 Nakashima, 2017, Long and branched polyamines are required for maintenance of the ribosome, tRNAHis and tRNATyr in Thermus thermophilus cells at high temperatures, Genes Cells, 22, 628, 10.1111/gtc.12502 Patel, 2006, Polyamines are essential for the formation of plague biofilm, J. Bacteriol, 188, 2355, 10.1128/JB.188.7.2355-2363.2006 Green, 2011, Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation, Mol. Microbiol, 81, 1109, 10.1111/j.1365-2958.2011.07757.x Lee, 2009, An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae, J. Biol. Chem, 284, 9899, 10.1074/jbc.M900110200 Becerra-Rivera, 2018, Polyamines are required for normal growth in Sinorhizobium meliloti, Microbiology, 164, 600, 10.1099/mic.0.000615 Sakanaka, 2018, Functional analysis of arginine decarboxylase gene speA of Bacteroides dorei by markerless gene deletion, FEMS Microbiol. Lett, 365, 10.1093/femsle/fny003 Sakanaka, 2016, Carboxyspermidine decarboxylase of the prominent intestinal microbiota species Bacteroides thetaiotaomicron is required for spermidine biosynthesis and contributes to normal growth, Amino Acids, 48, 2443, 10.1007/s00726-016-2233-0 Burrell, 2010, Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation, J. Biol. Chem, 285, 39224, 10.1074/jbc.M110.163154 Potter, 2014, Spermidine biosynthesis and transport modulate pneumococcal autolysis, J. Bacteriol, 196, 3556, 10.1128/JB.01981-14 Costerton, 1995, Microbial biofilms, Annu. Rev. Microbiol, 49, 711, 10.1146/annurev.mi.49.100195.003431 Flemming, 2010, The biofilm matrix, Nat. Rev. Microbiol, 8, 623, 10.1038/nrmicro2415 Karatan, 2005, NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine, J. Bacteriol, 187, 7434, 10.1128/JB.187.21.7434-7443.2005 McGinnis, 2009, Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways, FEMS Microbiol. Lett, 299, 166, 10.1111/j.1574-6968.2009.01744.x Sobe, 2017, Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system, J. Biol. Chem, 292, 17025, 10.1074/jbc.M117.801068 Wortham, 2010, Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation, Environ. Microbiol, 12, 2034, 10.1111/j.1462-2920.2010.02219.x Hobley, 2014, Norspermidine is not a self-produced trigger for biofilm disassembly, Cell, 156, 844, 10.1016/j.cell.2014.01.012 Hobley, 2017, Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR, J. Biol. Chem, 292, 12041, 10.1074/jbc.M117.789644 Ding, 2014, Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization, Appl. Environ. Microbiol, 80, 1498, 10.1128/AEM.03461-13 Wang, 2016, Spermidine inversely influences surface interactions and planktonic growth in Agrobacterium tumefaciens, J. Bacteriol, 198, 2682, 10.1128/JB.00265-16 Kera, 2018, Reduction of spermidine content resulting from inactivation of two arginine decarboxylases increases biofilm formation in Synechocystis sp. strain PCC 6803, J. Bacteriol, 200, e00617, 10.1128/JB.00664-17 Sturgill, 2004, Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis, Mol. Microbiol, 51, 437, 10.1046/j.1365-2958.2003.03835.x Kurihara, 2009, Dependence of swarming in Escherichia coli K-12 on spermidine and the spermidine importer, FEMS Microbiol. Lett, 294, 97, 10.1111/j.1574-6968.2009.01552.x Skiebe, 2012, Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane, Int. J. Med. Microbiol, 302, 117, 10.1016/j.ijmm.2012.03.003 Penwell, 2015, Discovery and characterization of new hydroxamate siderophores, baumannoferrin A and B, produced by Acinetobacter baumannii, Chembiochem, 16, 1896, 10.1002/cbic.201500147 Burrell, 2012, Evolution of a novel lysine decarboxylase in siderophore biosynthesis, Mol. Microbiol, 86, 485, 10.1111/j.1365-2958.2012.08208.x Abergel, 2006, Anthrax pathogen evades the mammalian immune system through stealth siderophore production, Proc. Natl. Acad. Sci. U.S.A, 103, 18499, 10.1073/pnas.0607055103 Baars, 2018, The purple non-sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin-related siderophores under aerobic and anaerobic conditions, Environ. Microbiol, 20, 1667, 10.1111/1462-2920.14078 Ong, 1979, Agrobactin, a siderophore from Agrobacterium tumefaciens, J. Biol. Chem, 254, 1860, 10.1016/S0021-9258(17)37736-0 Griffiths, 1984, Vibriobactin, a siderophore from Vibrio cholerae, J. Biol. Chem, 259, 383, 10.1016/S0021-9258(17)43671-4 Codd, 2018, Advances in the chemical biology of desferrioxamine B, ACS Chem. Biol, 13, 11, 10.1021/acschembio.7b00851 Codd, 2018, The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin, J. Biol. Inorg. Chem, 10.1007/s00775-018-1585-1