Control of a spacecraft’s spatial turn with minimum value of the path functional
Tóm tắt
The problem of optimal (with minimum value of the path functional) control over a spatial reorientation of a spacecraft is considered. Using the quaternion method, an analytical solution to this problem is obtained. For the symmetrical optimality index, the complete solution to the problem of spacecraft reorientation is represented in a closed form. The results of mathematical modeling of the spacecraft motion dynamics are presented, demonstrating the practical efficiency of the developed algorithm of control.
Tài liệu tham khảo
Branets, V.N. and Shmygalevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Use of Quaternions in Problems of Orientation of Solid Bodies), Moscow: Nauka, 1973.
Krasovskii, A.A., Sistemy avtomaticheskogo upravleniya poletom i ikh analiticheskoe konstruirovanie (Systems of Automatic Flight Control and Their Analytical Design), Moscow: Nauka, 1973.
Raushenbakh, B.V. and Tokar’, E.N., Upravlenie orientatsiei kosmicheskikh apparatov (Spacecraft Orientation Control), Moscow: Nauka, 1974.
Alekseev, K.B., Ekstensivnoe upravlenie orientatsiei kosmicheskikh letatel’nykh apparatov (Extensive Attitude Control of Space Vehicles), Moscow: Mashinostroenie, 1977.
Zubov, N.E., Optimal Control over Spacecraft’s Terminal Reorientation Based on Algorithm with a Prognostic Model, Kosm. Issled., 1991, vol. 29, no. 3, p. 340.
Chelnokov, Yu.N., Upravlenie orientatsiei KA, ispol’zuyushchee kvaterniony, Kosm. Issled., 1994, vol. 32, no. 3, p. 21.
Van’kov, A.I., Adaptive Robust Control of Spacecraft Angular Motion with the Use of Prognostic Models, Kosm. Issled., 1994, vol. 32, no. 4–5.
Spravochnik po teorii avtomaticheskogo upravleniya (Handbook on Automatic Control Theory), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.
Levskii, M.V., RF Patent 2153446 RU, Byull. Izobret., 2000, no. 21.
Levskii, M.V., Some Issues of Optimal Control over a Program Turn of a Spacecraft, Kosmonavtika i Raketostroenie, 2001, no. 24.
Krut’ko, P.D., Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineinye modeli (Inverse Problems in Controllable Systems Dynamics: Nonlinear Models), Moscow: Nauka, 1988.
Markeev, A.P., Teoreticheskaya mekhanika (Theoretical Mechanics), Moscow: Nauka, 1990.