A vision transformer-based automated human identification using ear biometrics
Tài liệu tham khảo
Mehdipour Ghazi, 2016, A comprehensive analysis of deep learning based representation for face recognition, 34
Song, 2019, Occlusion robust face recognition based on mask learning with pairwise differential Siamese network, 773
Jain, 2004, An introduction to biometric recognition, IEEE Trans Circuits Syst Video Technol, 14, 4, 10.1109/TCSVT.2003.818349
Abuowaida, 2020, Improved deep learning architecture for depth estimation from single image, Jordanian J Comput Inf Technol, 6, 434
Khaldi, 2021, Ear recognition based on deep unsupervised active learning, IEEE Sens J Early Access, 2021
Lei, 2020, Research on Ear Recognition Based on SSD-MobileNet-v1 Network, 4371
Ying, 2018, Human ear recognition based on deep convolutional neural network, 1830
Chowdhury, 2018, Robust ear biometric recognition using neural network, 1855
Alshazly, 2020, Deep convolutional neural networks for unconstrained ear recognition, IEEE Access, 8, 170295, 10.1109/ACCESS.2020.3024116
Mehta, 2023, A noble approach to 2D ear recognition system using hybrid transfer learning, 1
Mehta, 2023, Rotation invariant 2D ear recognition using gabor filters and ensemble of pre-trained deep convolutional neural network model, 1
M. Ott, S. Edunov, D. Grangier, and M. Auli. 2018. Scaling neural machine translation.
J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. 2018. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. Retrieved from https://arxiv.org/abs/1810.04805.
TB. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. 2020. Language models are few-shot learners. arXiv:2005.14165. Retrieved from https://arxiv.org/abs/2005.14165.
Radford, 2018, Improving language understanding by generative pre-training
Radford, 2019, Language models are unsupervised multitask learners
Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. 2019. RoBERTa: a robustly optimized bert pretraining approach. arXiv:1907.11692. Retrieved from https://arxiv.org/abs/1907.11692.
C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,W. Li, and PJ. Liu 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv:1910.10683. Retrieved from https://arxiv.org/abs/1910.10683.
W. Fedus, B. Zoph, and N. Shazeer. 2023 Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. arXiv:2101.03961. Retrieved from https://arxiv.org/abs/2101.03961.
D. Lepikhin, H.J. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen. 2020. Gshard: scaling giantmodels with conditional computation and automatic sharding. arXiv:2006.16668. Retrieved from https://arxiv.org/abs/2006.16668.
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. 2020. End-to-end object detection with transformers. arXiv:2005.12872. Retrieved from https://arxiv.org/abs/2005.12872.
X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai. 2020. Deformable DETR: deformable transformers for end-to-end object detection. arXiv:2010.04159. Retrieved from https://arxiv.org/abs/2010.04159.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. 2020. An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv:2010.11929. Retrieved from https://arxiv.org/abs/2010.11929.
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. 2020. Training data-efficient image transformers & distillation through attention. arXiv:2012.12877. Retrieved from https://arxiv.org/abs/2012.12877.
H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu,C. Xu, and W. Gao. 2020. Pre-trained image processing transformer. arXiv:2012.00364. Retrieved from https://arxiv.org/abs/2012.00364.
L. Ye, M. Rochan, Z. Liu, and Y. Wang. 2019. Cross-modal self-attention network for referring image segmentation. In CVPR.
R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. 2019. Video action transformer network. In CVPR.
C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid. 2019. VideoBERT: a joint model for video and language representation learning. In ICCV.
Ramesh, 2021, DALL E: creating images from text
W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai. 2019. VL-BERT: pre-training of generic visual-linguistic representations. arXiv:1908.08530. Retrieved from https://arxiv.org/abs/1908.08530.
H. Tan and M. Bansal. 2019. LXMERT: learning cross-modality encoder representations from transformers. In EMNLP-IJCNLP.
S. Chaudhari, G. Polatkan, R. Ramanath, and V. Mithal. 2019. An attentive survey of attention models. arXiv:1904.02874. Retrieved from https://arxiv.org/abs/1904.02874.
A.S. Correia and E.L. Colombini. 2021. Attention, please! A survey of neural attention models in deep learning. arXiv:2103.16775. Retrieved from https://arxiv.org/abs/2103.16775.
Mehta, 2023, 2D ear recognition using data augmentation and deep CNN, 467
Mehta, 2023, A comparative analysis of 2D ear recognition for constrained and unconstrained dataset using deep learning approach, 337
Upadhyay, 2023, Multi-dilation convolutional neural network for automatic handwritten signature verification, SN Comput Sci, 4, 476, 10.1007/s42979-023-01931-w
Vaswani, 2017, Attention is all you need, Adv Neural Inf Process Syst, 5998
T. Xiao, P. Dollar, M. Singh, E. Mintun, T. Darrell, and R. Girshick. Early convolutions help transformers see better. In A. Beygelzimer, Y. Dauphin, P. Liang, and J.Wortman Vaughan, editors, Advances in neural information processing systems, 2021.
H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou. Going deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021.
Z. Chen, L. Xie, J. Niu, X. Liu, L. Wei, and Qi Tian. Visformer: the vision-friendly transformer. arXiv preprint arXiv:2104.12533, 2021.
B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, and M. Douze. Levit: a vision transformer in convnet's clothing for faster inference. arXiv preprint arXiv:2104.01136, 2021.
Liu, 2021, Swin transformer: hierarchical vision transformer using shifted windows, 10012
A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270, 2021.
W. Wang, E. Xie, X. Li, D.P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122, 2021.
H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, Lu Yuan, and L. Zhang. Cvt: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.
K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, andWeiWu. Incorporating convolution designs into visual transformers. arXiv preprint arXiv:2103.11816, 2021.
Li Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F.E.H. Tay, J. Feng, and S. Yan. Tokens-to-token vit: training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.
Dataset at 2023 https://www.kaggle.com/datasets/omarhatif/datasets-for-ear-detection-and-recognition.
Ahila Priyadharshini, 2021, A deep learning approach for person identification using ear biometrics, Appl Intell, 51, 2161, 10.1007/s10489-020-01995-8
Zarachoff, 2021, Non-decimated wavelet based multi-band ear recognition using principal component analysis, IEEE Access, 10, 3949, 10.1109/ACCESS.2021.3139684
Zarachoff, 2018, 2D multi-band PCA and its application for ear recognition, 1
Kumar, 2012, Automated human identification using ear imaging, Pattern Recogn, 45, 956, 10.1016/j.patcog.2011.06.005
Meraoumia, 2015, An automated ear identification system using Gabor filters responses, 1
Mehta, 2023, Deep convolutional neural network-based effective model for 2D ear recognition using data augmentation, Imaging Sci J, 1, 10.1080/13682199.2023.2206763
Mehta, 2023, An efficient ear recognition technique based on deep ensemble learning approach, Evolving Syst, 1
Ramos-Cooper, 2022, Domain adaptation for unconstrained ear recognition with convolutional neural networks, CLEI Electron J, 25, 10.19153/cleiej.25.2.8