Enhanced solar and visible light photocatalytic activity of In2S3-decorated ZnO nanowires for water purification
Tài liệu tham khảo
Xiao, 2015, One dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis, Small, 11, 2115, 10.1002/smll.201402420
Gao, 2014, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nat. Commun., 6, 1
Chen, 2015, Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis, Thin Solid Films, 574, 1, 10.1016/j.tsf.2014.11.051
Wang, 2013, Tunable synthesis of TiO2/SrO core/shell nanowire arrays with enhanced photocatalytic activity, Mater. Res. Bull., 48, 21, 10.1016/j.materresbull.2012.09.067
Liu, 2012, Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: morphology evolution and its effect on dye-sensitized solar cell, ACS Appl. Mater. Interfaces, 4, 17, 10.1021/am201425n
Lee, 2012, Partial conversion reaction of ZnO nanowires to ZnSe by a simple selenization method and their photocatalytic activities, Mater. Chem. Phys., 137, 194, 10.1016/j.matchemphys.2012.09.006
Hariharan, 2006, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles, revisited, Appl. Catal. A: Gen., 304, 55, 10.1016/j.apcata.2006.02.020
Tian, 2012, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dyephotodegradation, Chem. Commun., 48, 2858, 10.1039/c2cc16434e
Achouri, 2014, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, J. Phys. Chem. Solids, 75, 1081, 10.1016/j.jpcs.2014.05.013
Moussa, 2016, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis, Appl. Catal. B Environ., 185, 11, 10.1016/j.apcatb.2015.12.007
Li, 2004, Single‐crystal hexagonal disks and rings of ZnO: low‐temperature, large‐scale synthesis and growth mechanism, Chem. Int. Ed., 43, 5238, 10.1002/anie.200460783
Sinha, 2014, Synthesis and enhanced properties of cerium doped ZnO nanorods, Ceramics Int., 40, 12337, 10.1016/j.ceramint.2014.04.079
Yin, 2015, Novel photoluminescence properties and enhanced photocatalytic activities for V2O5-loaded ZnO nanorods, Dalton Trans., 44, 4671, 10.1039/C5DT00015G
Wang, 2007, ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties, Funct. Mater., 17, 59, 10.1002/adfm.200600431
Jiang, 2012, Microwave-assisted synthesis of hexagonal structure ZnO micro-tubes, Mater. Lett., 81, 198, 10.1016/j.matlet.2012.05.012
Udawatte, 2011, Well-defined Au/ZnO nanoparticle composites exhibiting enhanced photocatalytic activities, ACS Appl. Mater. Interfaces, 3, 4531, 10.1021/am201221x
Zhang, 2014, ZnO-GO composite with for photocatalytic applications, ACS Appl. Mater. Interfaces, 6, 3623, 10.1021/am405872r
Etacheri, 2012, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS Appl. Mater. Interfaces, 4, 2717, 10.1021/am300359h
Zhang, 2010, Electrospun nanofibers of ZnO−SnO2Heterojunction with high photocatalytic activity, J. Phys. Chem. C, 114, 7920, 10.1021/jp100262q
Zou, 2014, Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity, CrystEngComm, 16, 1149, 10.1039/C3CE42144A
Liu, 2013, Synthesis and adsorption/photocatalysis performance of pyrite FeS2, Appl. Surf. Sci., 268, 213, 10.1016/j.apsusc.2012.12.061
Zhu, 2011, Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures, Superlattices Microst., 50, 549, 10.1016/j.spmi.2011.08.017
Lin, 2012, Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates, Nanoscale Res. Lett., 7, 401, 10.1186/1556-276X-7-401
Wang, 2010, Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays, Appl. Phys. Lett., 96
Sarkar, 2012, Dual-sensitization via Electron and energy harvesting in CdTe quantum dots decorated ZnO nanorod-based dye-sensitized solar cells, J. Phys. Chem. C, 116, 14248, 10.1021/jp3046593
Zhu, 2014, A suitable chemical conversion route to synthesize ZnO/CdS core/shell heterostructures for photovoltaic applications, Ceram. Int., 40, 3353, 10.1016/j.ceramint.2013.09.097
Sultan, 2013, Growth and optical properties of antimony sulfide decorated ZnO nano-rod heterojunctions, Mater. Lett., 104, 44, 10.1016/j.matlet.2013.04.009
Gan, 2011, In2S3 nanoflakes-functionalized cotton cellulose electrospun nanofibers for visible light photocatalysis, Nano Technol., 22, 305601
Khanchandani, 2013, Band gap tuning of ZnO/In2S3 Core/Shell nanorod arrays for enhanced visible-light-Driven photocatalysis, J. Phys. Chem. C, 117, 5558, 10.1021/jp310495j
Ranjith, 2016, Ce2S3decorated ZnO-ZnS core-shell nanorod arrays: efficient solar-driven photocatalytic properties, Catal. Today, 278, 271, 10.1016/j.cattod.2016.05.011
Xing, 2014, Hydrothermal synthesis of In2S3/g-C3N4heterojunctions with enhanced photocatalytic activity, J. Colloid Interface Sci., 433, 9, 10.1016/j.jcis.2014.07.015
Braiek, 2017, Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires, Int. J. Hydrogen Energy, 42, 5694, 10.1016/j.ijhydene.2017.01.015
Braiek, 2015, Electrochemical synthesis of ZnO/In2S3 core-shell nanowires for enhanced photoelectrochemical properties, J. Alloys. Compd., 653, 395, 10.1016/j.jallcom.2015.08.204
Yao, 2012, Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide, J. Power Sources, 207, 222, 10.1016/j.jpowsour.2012.01.154
Elias, 2007, Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer, Thin Solid Films, 515, 8553, 10.1016/j.tsf.2007.04.027
Chang, 2007, Enhancement of the ultraviolet emission of ZnO nanostructures by polyaniline modification, Chem. Phys. Lett., 446, 370, 10.1016/j.cplett.2007.08.078
Ashkenov, 2003, Infrared dielectric functions and phonon modes of high-quality ZnO films, J. Appl. Phys., 93, 126, 10.1063/1.1526935
Calzolari, 2013, Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach, Sci. Rep., 3, 10.1038/srep02999
Li, 2006, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40, 1119, 10.1016/j.watres.2005.12.042
Spasevska, 2012, Optimised In2S3 thin films deposited by spray pyrolysis, Hindawi Publishing Corporation, Int. J. Photoenergy, 637943, 1, 10.1155/2012/637943
Zhihua, 2012, Investigation on growth of In2S3 thin films by chemical bath deposition, Mater. Sci. Semicond. Process., 15, 187, 10.1016/j.mssp.2012.02.004
Li, 2013, A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties, Appl. Catal. B Environ., 138, 175, 10.1016/j.apcatb.2013.02.042
Chen, 2017, Well-ordered vertically aligned ZnO/CdS core/shell nanowires with enhanced photocatalytic performance, Surf. Coat. Technol., 320, 467, 10.1016/j.surfcoat.2016.11.085