Enhanced solar and visible light photocatalytic activity of In2S3-decorated ZnO nanowires for water purification

Z. Braiek1,2, T. Roques-Carmes3, I. Ben Assaker1, M. Gannouni1, P. Arnoux3, S. Corbel3, R. Chtourou1
1Laboratoire Nanomatériaux et Systèmes pour les Energies Renouvelables (LANSER), Centre de Recherches et des Technologies de l'Energie Technopole BorjCedria, Bp 95, hammam lif, 2050, Tunisia
2Faculté des sciences de Tunis, Campus Universitaire, Elmanar 2092, Tunis, Tunisia
3Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France

Tài liệu tham khảo

Xiao, 2015, One dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis, Small, 11, 2115, 10.1002/smll.201402420 Gao, 2014, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nat. Commun., 6, 1 Chen, 2015, Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis, Thin Solid Films, 574, 1, 10.1016/j.tsf.2014.11.051 Wang, 2013, Tunable synthesis of TiO2/SrO core/shell nanowire arrays with enhanced photocatalytic activity, Mater. Res. Bull., 48, 21, 10.1016/j.materresbull.2012.09.067 Liu, 2012, Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: morphology evolution and its effect on dye-sensitized solar cell, ACS Appl. Mater. Interfaces, 4, 17, 10.1021/am201425n Lee, 2012, Partial conversion reaction of ZnO nanowires to ZnSe by a simple selenization method and their photocatalytic activities, Mater. Chem. Phys., 137, 194, 10.1016/j.matchemphys.2012.09.006 Hariharan, 2006, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles, revisited, Appl. Catal. A: Gen., 304, 55, 10.1016/j.apcata.2006.02.020 Tian, 2012, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dyephotodegradation, Chem. Commun., 48, 2858, 10.1039/c2cc16434e Achouri, 2014, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, J. Phys. Chem. Solids, 75, 1081, 10.1016/j.jpcs.2014.05.013 Moussa, 2016, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis, Appl. Catal. B Environ., 185, 11, 10.1016/j.apcatb.2015.12.007 Li, 2004, Single‐crystal hexagonal disks and rings of ZnO: low‐temperature, large‐scale synthesis and growth mechanism, Chem. Int. Ed., 43, 5238, 10.1002/anie.200460783 Sinha, 2014, Synthesis and enhanced properties of cerium doped ZnO nanorods, Ceramics Int., 40, 12337, 10.1016/j.ceramint.2014.04.079 Yin, 2015, Novel photoluminescence properties and enhanced photocatalytic activities for V2O5-loaded ZnO nanorods, Dalton Trans., 44, 4671, 10.1039/C5DT00015G Wang, 2007, ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties, Funct. Mater., 17, 59, 10.1002/adfm.200600431 Jiang, 2012, Microwave-assisted synthesis of hexagonal structure ZnO micro-tubes, Mater. Lett., 81, 198, 10.1016/j.matlet.2012.05.012 Udawatte, 2011, Well-defined Au/ZnO nanoparticle composites exhibiting enhanced photocatalytic activities, ACS Appl. Mater. Interfaces, 3, 4531, 10.1021/am201221x Zhang, 2014, ZnO-GO composite with for photocatalytic applications, ACS Appl. Mater. Interfaces, 6, 3623, 10.1021/am405872r Etacheri, 2012, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS Appl. Mater. Interfaces, 4, 2717, 10.1021/am300359h Zhang, 2010, Electrospun nanofibers of ZnO−SnO2Heterojunction with high photocatalytic activity, J. Phys. Chem. C, 114, 7920, 10.1021/jp100262q Zou, 2014, Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity, CrystEngComm, 16, 1149, 10.1039/C3CE42144A Liu, 2013, Synthesis and adsorption/photocatalysis performance of pyrite FeS2, Appl. Surf. Sci., 268, 213, 10.1016/j.apsusc.2012.12.061 Zhu, 2011, Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures, Superlattices Microst., 50, 549, 10.1016/j.spmi.2011.08.017 Lin, 2012, Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates, Nanoscale Res. Lett., 7, 401, 10.1186/1556-276X-7-401 Wang, 2010, Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays, Appl. Phys. Lett., 96 Sarkar, 2012, Dual-sensitization via Electron and energy harvesting in CdTe quantum dots decorated ZnO nanorod-based dye-sensitized solar cells, J. Phys. Chem. C, 116, 14248, 10.1021/jp3046593 Zhu, 2014, A suitable chemical conversion route to synthesize ZnO/CdS core/shell heterostructures for photovoltaic applications, Ceram. Int., 40, 3353, 10.1016/j.ceramint.2013.09.097 Sultan, 2013, Growth and optical properties of antimony sulfide decorated ZnO nano-rod heterojunctions, Mater. Lett., 104, 44, 10.1016/j.matlet.2013.04.009 Gan, 2011, In2S3 nanoflakes-functionalized cotton cellulose electrospun nanofibers for visible light photocatalysis, Nano Technol., 22, 305601 Khanchandani, 2013, Band gap tuning of ZnO/In2S3 Core/Shell nanorod arrays for enhanced visible-light-Driven photocatalysis, J. Phys. Chem. C, 117, 5558, 10.1021/jp310495j Ranjith, 2016, Ce2S3decorated ZnO-ZnS core-shell nanorod arrays: efficient solar-driven photocatalytic properties, Catal. Today, 278, 271, 10.1016/j.cattod.2016.05.011 Xing, 2014, Hydrothermal synthesis of In2S3/g-C3N4heterojunctions with enhanced photocatalytic activity, J. Colloid Interface Sci., 433, 9, 10.1016/j.jcis.2014.07.015 Braiek, 2017, Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires, Int. J. Hydrogen Energy, 42, 5694, 10.1016/j.ijhydene.2017.01.015 Braiek, 2015, Electrochemical synthesis of ZnO/In2S3 core-shell nanowires for enhanced photoelectrochemical properties, J. Alloys. Compd., 653, 395, 10.1016/j.jallcom.2015.08.204 Yao, 2012, Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide, J. Power Sources, 207, 222, 10.1016/j.jpowsour.2012.01.154 Elias, 2007, Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer, Thin Solid Films, 515, 8553, 10.1016/j.tsf.2007.04.027 Chang, 2007, Enhancement of the ultraviolet emission of ZnO nanostructures by polyaniline modification, Chem. Phys. Lett., 446, 370, 10.1016/j.cplett.2007.08.078 Ashkenov, 2003, Infrared dielectric functions and phonon modes of high-quality ZnO films, J. Appl. Phys., 93, 126, 10.1063/1.1526935 Calzolari, 2013, Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach, Sci. Rep., 3, 10.1038/srep02999 Li, 2006, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40, 1119, 10.1016/j.watres.2005.12.042 Spasevska, 2012, Optimised In2S3 thin films deposited by spray pyrolysis, Hindawi Publishing Corporation, Int. J. Photoenergy, 637943, 1, 10.1155/2012/637943 Zhihua, 2012, Investigation on growth of In2S3 thin films by chemical bath deposition, Mater. Sci. Semicond. Process., 15, 187, 10.1016/j.mssp.2012.02.004 Li, 2013, A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties, Appl. Catal. B Environ., 138, 175, 10.1016/j.apcatb.2013.02.042 Chen, 2017, Well-ordered vertically aligned ZnO/CdS core/shell nanowires with enhanced photocatalytic performance, Surf. Coat. Technol., 320, 467, 10.1016/j.surfcoat.2016.11.085