Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes’ activities with the produced flavour compounds
Tóm tắt
During alcoholic fermentation, Saccharomyces cerevisiae synthesizes more than 400 different compounds with higher alcohols, acetate esters of higher alcohols and ethyl esters of medium-chain fatty acids being the most important products of its metabolism, determining the particular flavour profile of each wine. The concentration of the metabolites produced depends to a large extent on the strain used. The use of indigenous strains as starting cultures can lead to the production of wines with excellent organoleptic characteristics and distinct local character, superior in quality when compared to their commercial counterparts. However, the relationship of these wild-type genotypes, linked to specific terroirs, with the biosynthetic profiles of flavour metabolites is not completely clarified and understood. To this end, qRT-PCR was employed to examine, for the first time on the transcriptional level, the performance of an indigenous Saccharomyces cerevisiae strain (Z622) in its natural environment (Debina grape must). The expression of genes implicated in higher alcohols and esters formation was correlated with the concentrations of these compounds in the produced wine. Furthermore, by applying the same fermentation conditions, we examined the same parameters in a commercial strain (VL1) and compared its performance with the one of strain Z622. Strain Z622, exhibited lower concentrations of 2-methylbutanol, 3-methylbutanol and 2-phenyl ethanol, than VL1 correlating with the elevated expression levels of transaminase and decarboxylase genes. Furthermore, the significantly high induction of ADH3 throughout fermentation of Z622 probably explains the larger population numbers reached by Z622 and reflects the better adaptation of the strain to its natural environment. Regarding acetate ester biosynthesis, Z622 produced higher concentrations of total acetate esters, compared with VL1, a fact that is in full agreement with the elevated expression levels of both ATF1 and ATF2 in strain Z622. This study provides evidence on the transcriptional level that indigenous yeast Z622 is better adapted to its natural environment able to produce wines with desirable characteristics, i.e. lower concentrations of higher alcohol and higher ester, verifying its potential as a valuable starter for the local wine-industry.
Tài liệu tham khảo
Pretorious IS. Tailoring wine yeasts for the new millennium: novel approaches to the ancient art of wine making. Yeast. 2000;16:675–729.
Romano P, Fiore C, Paraggio M, Caruso M, Capece A. Function of yeast species and strains in wine flavour. Int J Food Microbiol. 2003;86:169–80.
Suzzi G, Arfelli G, Schirone M, Corsetti A, Perpetuini G, Tofalo R. Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d’Abruzzo red wine quality. Food Res Int. 2012;46:22–9.
Capece A, Granchi L, Guerrini S, Mangani S, Romaniello R, Vincenzini M, et al. Diversity of Saccharomyces cerevisiae strains isolated from two Italian wine-producing regions. Front Microbiol. 2016. https://doi.org/10.3389/fmicb.2016.01018.
Ugliano M, Henschke PA. Yeasts and Wine Flavour. In: Moreno-Arribas MV, Polo MC, editors. Wine chemistry and biochemistry. New York: Springer; 2009. p. 314–92.
Querol A, Perez-Torrado R, Alonso-del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E. New trends in the uses of yeasts in oenology. In: Toldrá F, editor. Advances in food and nutrition research. Cambridge: Elsevier; 2018. p. 177–210.
Mina M, Tsaltas D. Contribution of yeast in wine aroma and flavour. In: Morata A, Loira I, editors. Yeast—industrial applications. London: IntechOpen; 2017. https://doi.org/10.5772/intechopen.706562017.
Swiegers JH, Saerens SMG, Pretorius IS. Novel yeast strains as tools for adjusting the flavour of fermented beverages to market specifications. In: Havkin-Frenkel D, Dudai N, editors. Biotechnology in flavour production. 2nd ed. Oxford: Wiley; 2016. p. 62–132.
Ehrlich F. Über die Bedingungen der Fuseloilbildung und über ihren Zusammenhang mit dem Eiweissaufbau der Hefe. Ber Dtsch Chem Ges. 1907;40:1027–47.
Neubauer O, Fromherz K. Über den Abbau der Aminosäuren bei der Hefegärung. Hoppe-Seyler’s Z Physiol Chem. 1911;70:326–50.
Hazelwood LA, Daran JM, van Maris AJA, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–66.
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev. 2017. https://doi.org/10.1093/femsre/fux031.
Kruis AJ, Levisson M, Mars AE, van der Ploeg M, Garcés Daza F, Ellena V, et al. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng. 2017;41:92–101.
Kruis AJ, Brigida G, Jonker T, Mars AE, van Rijswijck IMH, Wolkers-Rooijackers Judith CM, et al. Contribution of Eat1 and other alcohol acyltransferases to ester production in Saccharomyces cerevisiae. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.03202.
Holt S, de Carvalho B, Foulquié-Moreno MR, Thevelein JM. Polygenic analysis in absence of major effector ATF1 unveils novel components in yeast flavor ester biosynthesis. MBio. 2018. https://doi.org/10.1128/mbio.01279-18.
Barbosa C, Mendes-Faia A, Lage P, Mira NP, Mendes-Ferreira A. Genomic expression program of Saccharomyces cerevisiae along a mixed culture wine fermentation with Hanseniaspora guilliermondii. Microb Cell Fact. 2015;14:124.
Gustafsson FS, Jiranek V, Neuner M, Scholl CM, Morgan SC, Durall DM. The interaction of two Saccharomyces cerevisiae strains affects fermentation-derived compounds in wine. Fermentation. 2016. https://doi.org/10.3390/fermentation2020009.
Tofalo R, Patrignani F, Lanciotti R, Perpetuini G, Schirone M, Di Gianvito P, Pizzoni D, Arfelli G, Suzzi G. Aroma profile of Montepulcianο d’Abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts. Front Microbiol. 2016;7:610.
Sipiczki M. Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol. 2011;61:85–93.
Šuranská H, Vránová D, Omelková L. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae srains. Braz J Microbiol. 2016;47:181–90.
Furdíková K, Makyšová K, Špánik I. Effect of indigenous S. cerevisiae strains on higher alcohols, volatile acids, and esters in wine. Czech J Food Sci. 2017. https://doi.org/10.17221/79/2016-cjfs.
Alves Z, Melo A, Figueiredo AR, Coimbra MA, Gomes AC, Rocha SM. Exploring the Saccharomyces cerevisiae volatile metabolome: indigenous versus commercial strains. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0143641.
Rossouw D, Naes T, Bauer FF. Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics. 2008;9:530.
Rossouw D, Olivares-Hernandes R, Nielsen J, Bauer FF. Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation. Appl Environ Microbiol. 2009;75:6600–12.
Rossouw D, Bauer FF. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol. 2009;84:937–54.
Rossouw D, van den Dool AH, Jacobson D, Bauer FF. Comparative transcriptomic and proteomic profiling of industrial wine yeast strains. Appl Environ Microbiol. 2010;76:3911–23.
Rossouw D, Jacobson D, Bauer FF. Transcriptional regulation and the diversification of metabolism in wine yeast strains. Genetics. 2012;190:251–61.
Zuzuarregui A, Monteoliva L, Gil C, del Olmo M. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol. 2006;72:836–47.
Parapouli M, Hatziloukas E, Drainas C, Perisynakis A. Τhe effect of Debina grapevine indigenous yeast strains of Metschnikowia and Saccharomyces on wine flavour. J Ind Microbiol Biotechnol. 2010;37:85–93.
Vendesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.
Wang Y, Barbacioru C, Hyland F, Xiao W, Hunkapiller KL, Blake J, et al. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics. 2006;7:59.
Dallas PB, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, et al. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? BMC Genomics. 2005;6:59.
Molina AM, Swiegers JH, Varela C, Pretorius IS, Agosin E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl Microbiol Biotechnol. 2007;77:675–87.
Vaudano E, Costantini A, Cersosimo M, Del Prete V, Garcia-Moruno E. Application of real-time RT–PCR to study gene expression in active dry yeast (ADY) during the rehydration phase. Int J Food Microbiol. 2009;129:30–6.
Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res. 2006;6:726–43.
Riou C, Nicaud GM, Barre P, Gaillardin C. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast. 1997;13:903–15.
Teste MA, Duquenne M, François JM, Parrou JL. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol. 2009;10:99.
Romagnoli G, Luttik MAH, Koetter P, Pronk JT, Daran J-M. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:7538–48.
Beltran G, Novo M, Leberre V, Sokol S, Labourdette D, Guillamon JM, et al. Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res. 2006;6:1167–83.
De Smidt O, du Preez JC, Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 2008;8:967–78.
Hansen R, Pearson SY, Brosnan JM, Meaden PG, Jamieson DJ. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Appl Microbiol Biotechnol. 2006;72:116–25.
Paget CM, Schwartz J-M, Delneri D. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures. Mol Ecol. 2014;23:5241–57.
González-Ramos D, de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels. 2016;9:173.
Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, et al. Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol. 1998;64:4076–8.
Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP, Pretorious IS, et al. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1 and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol. 2003;69:5228–37.
Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast. 2006;23:641–59.
Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, et al. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem. 2006;281:4446–56.
Saerens SMG, Delvaux FR, Verstrepen KJ, Thevelein JM. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol. 2010;3:165–77.
Yarrow D. Methods for isolation, maintenance and identification of yeast. In: Kurtzman CP, Fell JW, editors. The Yeasts: a taxonomic study. 4th ed. Amsterdam: Elsevier Science; 1999. p. 77–100.
Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem. 1944;153:375–80.
Hierro N, Esteve-Zarzoso B, Mas A, Guillamόn JM. Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res. 2007;7:1340–9.
Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editors. Bioinformatics methods and protocols: methods in molecular biology. Totowa: Humana Press; 2000. p. 365–86.
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Parapouli M, Fragkos-Livanios L, Samiotaki M, Koukkou AI, Perisynakis A, Hatziloukas E, et al. Comparative proteomic analysis of alcoholic fermentation employing a new environmental strain of Saccharomyces cerevisiae. Process Biochem. 2010;45:1094–102.
User Bulletin No. 2. ABI PRISM 7700 Sequence Detection System. 1997. p. 3-10.
Regulation. Regulation No 2676/90 determining community analysis methods applicable in the wine sector. OV J Eur Commun. 1990;L272:1–192.
Lilly M, Lambrechts MG, Pretorious IS. Effect of increased yeast alcohol acetyltransferase activity on flavour profiles of wine and distillates. Appl Environ Microbiol. 2000;66:744–53.