Controlling spin relaxation with a cavity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983)
Heinzen, D. J., Childs, J. J., Thomas, J. E. & Feld, M. S. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett. 58, 1320–1323 (1987)
Yamamoto, Y., Machida, S., Horikoshi, Y., Igeta, K. & Bjork, G. Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity. Opt. Commun. 80, 337–342 (1991)
Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998)
Butler, M. C. & Weitekamp, D. P. Polarization of nuclear spins by a cold nanoscale resonator. Phys. Rev. A 84, 063407 (2011)
Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons, 2001)
Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011)
Shapiro, M. G. et al. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nature Biotechnol. 28, 264–270 (2010)
Wood, C. J., Borneman, T. W. & Cory, D. G. Cavity cooling of an ensemble spin system. Phys. Rev. Lett. 112, 050501 (2014)
Sleator, T., Hahn, E. L., Hilbert, C. & Clarke, J. Nuclear-spin noise. Phys. Rev. Lett. 55, 1742–1745 (1985)
Zhou, X. et al. High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array. Phys. Rev. B 89, 214517 (2014)
Bienfait, A. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nature Nanotechnol. http://dx.doi.org/10.1038/nnano.2015.282 (2015)
Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959)
Wolfowicz, G. et al. Decoherence mechanisms of 209 Bi donor electron spins in isotopically pure 28Si. Phys. Rev. B 86, 245301 (2012)
Morley, G. W. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nature Mater. 9, 725–729 (2010)
George, R. E. et al. Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si. Phys. Rev. Lett. 105, 067601 (2010)
Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance 225 (Oxford Univ. Press, 2001)
Feher, G. & Gere, E. A. Electron spin resonance experiments on donors in silicon. II. Electron spin relaxation effects. Phys. Rev. 114, 1245–1256 (1959)
Bloembergen, N. & Pound, R. V. Radiation damping in magnetic resonance experiments. Phys. Rev. 95, 8–12 (1954)
Wood, C. J. & Cory, D. G. Cavity cooling to the ground state of an ensemble quantum system. Preprint at http://arXiv.org/abs/1506.03007 (2015)
Feher, G., Gordon, J. P., Buehler, E., Gere, E. A. & Thurmond, C. D. Spontaneous emission of radiation from an electron spin system. Phys. Rev. 109, 221–222 (1958)
Temnov, V. V. & Woggon, U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. Phys. Rev. Lett. 95, 243602 (2005)
Carver, T. R. & Slichter, C. P. Polarization of nuclear spins in metals. Phys. Rev. 92, 212–213 (1953)
Abragam, A. & Goldman, M. Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 41, 395–467 (1978)
Bloembergen, N., Shapiro, S., Pershan, P. S. & Artman, J. O. Cross-relaxation in spin systems. Phys. Rev. 114, 445–459 (1959)
Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nature Nanotechnol. 8, 561–564 (2013)
Van Duzer, T. & Turner, C. W. Principles of Superconductive Devices and Circuits 2nd edn (Prentice-Hall PTR, 1999)
Palacios-Laloy, A. Superconducting Qubit in a Resonator: Test of the Leggett-Garg Inequality and Single-shot Readout. PhD thesis, Université Pierre et Marie Curie — Paris VI (2010)
Mentink-Vigier, F. et al. Increasing sensitivity of pulse EPR experiments using echo train detection schemes. J. Magn. Reson. 236, 117–125 (2013)
Bloembergen, N. On the interaction of nuclear spins in a crystalline lattice. Physica 15, 386–426 (1949)
Abragam, A. Principles of Nuclear Magnetism Ch. IX (Oxford Univ. Press, 1983)
de Graaf, S. E., Davidovikj, D., Adamyan, A., Kubatkin, S. E. & Danilov, A. V. Galvanically split superconducting microwave resonators for introducing internal voltage bias. Appl. Phys. Lett. 104, 052601 (2014)
Wisby, I. et al. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator. Appl. Phys. Lett. 105, 102601 (2014)
Samkharadze, N. et al. High kinetic inductance superconducting nanowire resonators for circuit QED in a magnetic field. Preprint at http://arXiv.org/abs/1511.01760 (2015)