Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler

International Journal of Heat and Mass Transfer - Tập 81 - Trang 457-464 - 2015
Lin Chen1, Ying-Ying Sun1, Jun Lin2, Xiao-Ze Du1, Gao-Sheng Wei1, Shao-Jian He2, Sergei Nazarenko3
1Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
2School of Renewable Energy, North China Electric Power University, Beijing 102206, China
3School of Polymers and High Performance Materials, The University of Southern Mississippi, Hattiesburg, MS 39406, USA

Tài liệu tham khảo

Rosato, 1997 Singh, 2014, High thermal conductivity of chain-oriented amorphous polythiophene, Nat. Nanotechnol., 9, 384, 10.1038/nnano.2014.44 Yu, 2007, Graphite nanoplatelet−epoxy composite thermal interface materials, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s Shahil, 2012, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett., 12, 861, 10.1021/nl203906r Cao, 2013, Polymer nanowire arrays with high thermal conductivity and superhydrophobicity fabricated by a nano-molding technique, Heat Transfer Eng., 34, 131, 10.1080/01457632.2013.703097 Yu, 2014, Graphene based silicone thermal greases, Phys. Lett. A, 378, 207, 10.1016/j.physleta.2013.10.017 Cahill, 2012, Extremes of heat conduction-pushing the boundaries of the thermal conductivity of materials, MRS Bull., 37, 855, 10.1557/mrs.2012.201 Yu, 2012, Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties, Polymer, 53, 471, 10.1016/j.polymer.2011.12.040 T’Joen, 2009, A review on polymer heat exchangers for HVAC&R applications, Int. J. Refrig., 32, 763, 10.1016/j.ijrefrig.2008.11.008 Chen, 2009, Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity, Exp. Therm. Fluid Sci., 33, 922, 10.1016/j.expthermflusci.2009.04.001 Han, 2011, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 36, 914, 10.1016/j.progpolymsci.2010.11.004 Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064 Huxtable, 2003, Interfacial heat flow in carbon nanotube suspensions, Nat. Mater., 2, 731, 10.1038/nmat996 Shenogin, 2004, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites, J. Appl. Phys., 95, 8136, 10.1063/1.1736328 Lee, 2006, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. A Appl. Sci. Manuf., 37, 727, 10.1016/j.compositesa.2005.07.006 Weber, 2003, Thermally conductive nylon 6,6 and polycarbonate based resins. I. Synergistic effects of carbon fillers, J. Appl. Polym. Sci., 88, 112, 10.1002/app.11571 Weber, 2003, Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling, J. Appl. Polym. Sci., 88, 123, 10.1002/app.11572 Yu, 2008, Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites, Adv. Mater., 20, 4740, 10.1002/adma.200800401 Sanada, 2009, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Compos. A Appl. Sci. Manuf., 40, 724, 10.1016/j.compositesa.2009.02.024 Yang, 2011, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49, 793, 10.1016/j.carbon.2010.10.014 Im, 2012, Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite, Carbon, 50, 5429, 10.1016/j.carbon.2012.07.029 Pak, 2012, Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers, Carbon, 50, 4830, 10.1016/j.carbon.2012.06.009 Teng, 2012, Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride, Compos. B Eng., 43, 265, 10.1016/j.compositesb.2011.05.027 Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Res., 1, 187 Progelhof, 1976, Methods for predicting the thermal conductivity of composite systems: a review, Polym. Eng. Sci., 16, 615, 10.1002/pen.760160905 Agari, 1986, Estimation on thermal conductivities of filled polymers, J. Appl. Polym. Sci., 32, 5705, 10.1002/app.1986.070320702 Cheng, 1999, The effective stagnant thermal conductivity of porous media with periodic structures, J. Porous Media, 2, 19, 10.1615/JPorMedia.v2.i1.20 Nan, 2003, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett., 375, 666, 10.1016/S0009-2614(03)00956-4 Liang, 2009, A new heat transfer model of inorganic particulate-filled polymer composites, J. Mater. Sci., 44, 4715, 10.1007/s10853-009-3729-8 Leung, 2013, Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates, Compos. B Eng., 45, 43, 10.1016/j.compositesb.2012.10.001 Nan, 2004, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 35, 10.1063/1.1808874 Hu, 2013, Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling, J. Appl. Phys., 114, 224, 10.1063/1.4842896 Mikdam, 2010, Statistical continuum theory for the effective conductivity of fiber filled polymer composites: effect of orientation distribution and aspect ratio, Compos. Sci. Technol., 70, 510, 10.1016/j.compscitech.2009.12.002