Neonicotinoid metabolic activation and inactivation established with coupled nicotinic receptor-CYP3A4 and -aldehyde oxidase systems
Tài liệu tham khảo
Casida, 1998, Golden age of insecticide research: past, present, or future?, Annu. Rev. Entomol., 43, 1, 10.1146/annurev.ento.43.1.1
Coleman, 2002, Molecular characterization of the amplified aldehyde oxidase from insecticide resistant Culex quinquefasciatus, Eur. J. Biochem., 269, 768, 10.1046/j.0014-2956.2001.02682.x
Daborn, 2001, DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid, Mol. Genet. Genomics, 266, 556, 10.1007/s004380100531
Dick, 2005, Identification of aldehyde oxidase as the neonicotinoid nitroreductase, Chem. Res. Toxicol., 18, 317, 10.1021/tx049737i
Hemingway, 2000, Aldehyde oxidase is coamplified with the World's most common Culex mosquito insecticide resistance-associated esterases, Insect Mol. Biol., 9, 93, 10.1046/j.1365-2583.2000.00160.x
Hukkanen, 2005, Metabolism and disposition kinetics of nicotine, Pharmacol. Rev., 57, 79, 10.1124/pr.57.1.3
Iwasa, 2004, Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera, Crop Prot., 23, 371, 10.1016/j.cropro.2003.08.018
Kagabu, 2005, Insecticidal and neuroblocking activities of thiamethoxam-type compounds in the American cockroach (Periplaneta americana L.), J. Pestic. Sci., 30, 111, 10.1584/jpestics.30.111
Kanne, D.B., Dick, R.A., Tomizawa, M., Casida, J.E., 2005. Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem. Res. Toxicol. 18, in press.
Kayser, 2004, Comparative analysis of neonicotinoid binding to insect membranes. I. A structure-activity study of the mode of [3H]imidacloprid displacement in Myzus persicae and Aphis craccivora, Pest Manag. Sci., 60, 945, 10.1002/ps.919
Le Goff, 2003, Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila, Insect Biochem. Mol. Biol., 33, 701, 10.1016/S0965-1748(03)00064-X
Liu, 1993, Relevance of [3H]imidacloprid binding site in house fly head acetylcholine receptor to insecticidal activity of 2-nitromethylene- and 2-nitroimino-imidazolidines, Pestic. Biochem. Physiol., 46, 200, 10.1006/pest.1993.1051
Nauen, 2003, Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants, Pestic. Biochem. Physiol., 76, 55, 10.1016/S0048-3575(03)00065-8
Nishimura, 1994, Relationship between insecticidal and neurophysiological activities of imidacloprid and related compounds, Pestic. Biochem. Physiol., 50, 51, 10.1006/pest.1994.1057
Nishiwaki, 2004, Metabolism of imidacloprid in houseflies, J. Pestic. Sci., 29, 110, 10.1584/jpestics.29.110
Rauch, 2003, Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae), Arch. Insect Biochem. Physiol., 54, 165, 10.1002/arch.10114
Schulz-Jander, 2002, Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction, Toxicol. Lett., 132, 65, 10.1016/S0378-4274(02)00068-1
Schulz-Jander, 2002, Neonicotinoid insecticides: reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes, Chem. Res. Toxicol., 15, 1158, 10.1021/tx0200360
Tomizawa, 1996, Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors, J. Neurochem., 67, 1669, 10.1046/j.1471-4159.1996.67041669.x
Tomizawa, 2000, Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors, J. Agric. Food Chem., 48, 6016, 10.1021/jf000873c
Tomizawa, 2003, Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors, Annu. Rev. Entomol., 48, 339, 10.1146/annurev.ento.48.091801.112731
Tomizawa, 2003, The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor: an anomaly for the nicotinoid cation-π interaction model, Biochemistry, 42, 7819, 10.1021/bi0300130
Tomizawa, 2005, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol., 45, 247, 10.1146/annurev.pharmtox.45.120403.095930
Watt, 2000, Determination of the in vitro metabolism of (+)- and (−)-epibatidine, J. Chromatogr. A, 896, 229, 10.1016/S0021-9673(00)00597-5
Whiting, 1991, Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts, Mol. Pharmacol., 40, 463
Yamamoto, 1998, Structural factors contributing to insecticidal and selective actions of neonicotinoids, Arch. Insect Biochem. Physiol., 37, 24, 10.1002/(SICI)1520-6327(1998)37:1<24::AID-ARCH4>3.0.CO;2-V
1999, 300 pp
Zhang, 2000, Insect nicotinic receptor: conserved neonicotinoid specificity of [3H]imidacloprid binding site, J. Neurochem., 75, 1294, 10.1046/j.1471-4159.2000.751294.x