Using a multi-criteria approach to assess post-release recovery periods in behavioural studies: study of a fish telemetry project in the Seine Estuary
Tóm tắt
Biotelemetry has many advantages for monitoring fish behaviour. However, the accuracy of results can be impacted by changes in fish behaviour following tagging and other forms of human intervention. Different fish take different amounts of time to return to normal behaviour patterns. This recovery period is often difficult to assess. In many studies, it is simply ignored, while in others an assumed duration is used. This assumption is rarely based on objective criteria. To address this challenging aspect of fish telemetry, a multi-criteria stepwise approach was developed based on complementary criteria obtainable through prior knowledge of the normal behaviour of studied species (home range, diel rhythm, homing, shoaling, migration…). It was applied to the case study of an acoustic telemetry project in the Seine Estuary (France) for three estuarine species exhibiting contrasted ecological traits: European eel Anguilla anguilla (Linnaeus 1758), thin lipped grey mullet Liza ramada (Risso 1827) and bream Abramis brama (Linnaeus 1758). Taking into account the particular traits of the species studied, we used the following three criteria: time to return to core area of activity, time to return to rhythmic activity, and time to return to site of capture. Post-release periods of recovery varied greatly between species. The median value was 10 days for eel, 25 days for mullet, and 1 day for bream. During this period, eels moved very little and the schedule pattern presented a diel rhythm with most detections occurring at night. All mullet exhibited rapid downstream trajectories after release, with larger distances covered during the ebb. Only five individuals returned later to the study site. This behaviour turns out to be not only an effect of post-release stress, but also the result of normal shifts in feeding habitat use by large shoals of mullet. Common bream exhibit very short periods of recovery with strong site fidelity. Most of the individuals of the different species (72%) return to their site of capture. The approach allows the identification of individual periods of recovery specific to the species and environment being studied. It maximises the amount of conserved data representing normal behaviour and can be implemented with various types of tracking data. Analysis of this period provides additional information about the stress response of species and their associated behaviour.
Tài liệu tham khảo
Bridger CJ, Booth RK (2003) The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Rev Fish Sci 11(1):13–34
Portz DE, Woodley CM, Cech JJ (2006) Stress-associated impacts of short-term holding on fishes. Rev Fish Biol Fisheries 16(2):125–170
Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42(3):517–525
Jepsen N, Davis LE, Schreck CB, Siddens B (2001) The physiological response of chinook salmon smolts to two methods of radio-tagging. Trans Am Fish Soc 130(3):495–500
Montoya A, López-Olmeda JF, Lopez-Capel A, Sánchez-Vázquez FJ, Pérez-Ruzafa A (2012) Impact of a telemetry-transmitter implant on daily behavioral rhythms and physiological stress indicators in gilthead seabream (Sparus aurata). Mar Environ Res 79:48–54
Rechisky EL, Welch DW (2010) Surgical implantation of acoustic tags: influence of tag Loss and tag-induced mortality on free-ranging and hatchery-held spring chinook salmon (Oncorhynchus tshawytscha) smolts. In: Wolf K, O’Neal J (eds) Tagging, telemetry and marking measures for monitoring fish populations. PNAMP Special Publication, pp 69–94
Boone SS, Divers SJ, Camus AC, Peterson DL, Jennings CA, Shelton JL et al (2013) Pathologic and physiologic effects associated with long-term intracoelomic transmitters in captive siberian sturgeon. North Am J Fish Manag 33(5):869–877
Koeck B, Gudefin A, Romans P, Loubet J, Lenfant P (2013) Effects of intracoelomic tagging procedure on white seabream (Diplodus sargus) behavior and survival. J Exp Mar Biol Ecol 440:1–7
Hockersmith EE, Muir WD, Smith SG, Sandford BP, Perry RW, Adams NS et al (2003) Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia Rivers. North Am J Fish Manag 23(2):404–413
Bernard DR, Hasbrouck JJ, Fleischman SJ (1999) Handling-induced delay and downstream movement of adult chinook salmon in rivers. Fish Res 44(1):37–46
Caffrey JM, Conneely JJ, Connolly B (1996) Radio telemetric determination of bream (Abramis brama L.) movements in Irish canals. In: Baras E, Philippart JC (eds) Underwater biotelemetry. University of Liège, Liège, pp 59–65
Jadot C, Donnay A, Acolas ML, Cornet Y, Anras MLB (2006) Activity patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei: Sparidae) in the Mediterranean Sea. ICES J Mar Sci 63(1):128–139
Lyons J, Lucas MC (2002) The combined use of acoustic tracking and echo sounding to investigate the movement and distribution of common bream (Abramis brama) in the River Trent, England. Hydrobiologia 483(1–3):265–273
Alos J, Cabanellas-Reboredo M, March D (2012) Spatial and temporal patterns in the movement of adult two-banded sea bream Diplodus vulgaris (Saint-Hilaire 1817). Fish Res 115:82–88
Kawabata Y, Okuyama J, Asami K, Yoseda K, Arai N (2008) The post-release process of establishing stable home ranges and diel movement patterns of hatchery-reared black-spot tuskfish Choerodon schoenleinii. J Fish Biol 73(7):1770–1782
Mason TJ, Lowe CG (2010) Home range, habitat use, and site fidelity of barred sand bass within a southern California marine protected area. Fish Res 106:93–101
Kafemann R, Adlerstein S, Neukamm R (2000) Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system. Fish Res 46(1–3):313–325
Rogers KB, White GG (2007) Analysis of movement and habitat use from telemetry data. In: Guy C, Brown M (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, pp 625–676
Wagner G, Cooke S, Brown R, Deters K (2011) Surgical implantation techniques for electronic tags. Rev Fish Biol Fisheries 21:71–81
Anderson WG, McKinley RS, Colavecchia M (1997) The use of clove oil as an anesthetic for rainbow trout and its effects on swimming performance. North Am J Fish Manag 17(2):301–307
Peake S (1998) Sodium bicarbonate and clove oil as potential anesthetics for nonsalmonid fishes. North Am J Fish Manag 18(4):919–924
Winter JD (1996) Advances in underwater biotelemetry. In: Murphy BR, Willis DW (eds) Fisheries techniques. American Fisheries Society, Bethesda, pp 555–590
Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res 57(1):1–13
Ohta I, Kakuma S (2005) Periodic behavior and residence time of yellowfin and bigeye tuna associated with fish aggregating devices around Okinawa Islands, as identified with automated listening stations. Mar Biol 146(3):581–594
Simpfendorfer CA, Heupel MR, Hueter RE (2002) Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements. Can J Fish Aquat Sci 59(1):23–33
Beyer HL (2004) Hawth’s analysis tools for ArcGIS. http://www.spatialecology.com/htools. Accessed 14 June 2011
Abecasis D, Bentes L, Erzini K (2009) Home range, residency and movements of Diplodus sargus and Diplodus vulgaris in a coastal lagoon: connectivity between nursery and adult habitats. Estuar Coast Shelf Sci 85(4):525–529
Daverat F, Beaulaton L, Poole R, Lambert P, Wickstrom H, Andersson J et al (2012) One century of eel growth: changes and implications. Ecol Freshw Fish 21(3):325–336
Glamuzina B, Dulcic J, Conides A, Bartulovic V, Matic-Skoko S, Papaconstantinou C (2007) Some biological parameters of the thin-lipped mullet Liza ramada (Pisces, Mugilidae) in the Neretva River delta (Eastern Adriatic, Croatian coast). Vie Milieu 57(3):131–136
Treer T, Opacak A, Anicic I, Safner R, Piria M, Odak T (2003) Growth of bream, Abramis brama, in the Croatian section of the Danube. Czech J Anim Sci 48(6):251–256
Baras E, Jeandrain D, Serouge B, Philippart JC (1998) Seasonal variations in time and space utilization by radio-tagged yellow eels Anguilla anguilla (L.) in a small stream. Hydrobiologia 371–372:187–198
Lefevre MA, Stokesbury MJW, Whoriskey FG, Dadswell MJ (2013) Migration of Atlantic salmon smolts and post-smolts in the Rivière Saint-Jean, QC North Shore: timing of the smolt run, diel and tidal influence on swimming rates, from riverine to marine ecosystems. Environ Biol Fishes 96:1017–1028
Baras E, Jeandrain D (1998) Evaluation of surgery procedures for tagging eel Anguilla anguilla with biotelemetry transmitters. Hydrobiologia 371–372:107–111
Acolas ML, Rochard E, Le Pichon C, Rouleau E (2012) Downstream migration patterns of one-year-old hatchery-reared European sturgeon (Acipenser sturio). J Exp Mar Biol Ecol 430–431:68–77
Almeida PR (1996) Estuarine movement patterns of adult thin-lipped grey mullet, Liza ramada (Risso) (Pisces, Mugilidae), observed by ultrasonic tracking. J Exp Mar Biol Ecol 202(2):137–150
Oliveira JM, Ferreira MT (1997) Abundance, size composition and growth of a thin-lipped grey mullet, Liza ramada (Pisces: Mugilidae) population in an Iberian River. Folia Zool 46(4):375–384
McGovern P, McCarthy TK (1992) Local movements of freshwater eels (Anguilla anguilla L.) in western Ireland. In: Priede IG, Swift SM (eds) Wildlife telemetry: remote monitoring and tracking of animals. Ellis Horwood, New York, pp 319–327
Béguer-Pon M, Castonguay M, Benchetrit J, Hatin D, Legault M, Verreault G et al (2015) Large-scale, seasonal habitat use and movements of yellow American eels in the St. Lawrence River revealed by acoustic telemetry. Ecol Freshw Fish 24:99–111
Donnelly RE, Caffrey JM, Tierney DM (1998) Movements of a bream [Abramis brama (L.)], rudd x bream hybrid, tench [Tinca tinca (L.)] and pike [Esox lucius (L.)] in an Irish canal habitat. Hydrobiologia 372:305–308
Horky P, Slavik O, Bartos L, Kolarova J, Randak T (2007) Behavioural pattern in cyprinid fish below a weir as detected by radio telemetry. J Appl Ichthyol 23(6):679–683
Vasek M, Kubecka J (2004) In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool 53(2):203–214