Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: systematic review and meta-analysis
Tóm tắt
The concentration of fluoride in ground drinking water greater than the world health organization standard value imposes a serious health, social and economic problem in developing countries. In the Ethiopian Rift Valley where deep wells are the major source of drinking water, high fluoride level is expected. Though many epidemiological studies on fluoride concentration and its adverse effects have been conducted in the region, the result is highly scattered and needs systematically summarized for better utilization. This research is aimed at estimating the pooled level of fluoride concentration in ground drinking water and the prevalence of dental fluorosis among Ethiopian rift valley residences. Cochrane library, MEDLINE/PubMed and Google scholar databases were searched for studies reporting the mean concentration of fluoride in ground water and prevalence of dental fluorosis in Ethiopian Rift valley. Search terms were identified by extracting key terms from reviews and selected relevant papers and review medical subject headings for relevant terms. The mean fluoride level in ground water and the prevalence of dental fluorosis were pooled from eleven and nine primary studies conducted in Ethiopian Rift Valley respectively. The pooled mean level of fluoride in ground water therefore was 6.03 mg/l (95% CI; 4.72–7.72, p < 0.001) and the pooled prevalence of dental fluorosis among residents in Ethiopian rift valley was 32% (95% CI: 25, 39%, p < 0.001), 29% (95% CI: 22, 36%, p < 0.001) and 24% (95% CI: 17, 32%, p < 0.001 for mild, moderate and sever dental fluorosis respectively. The overall prevalence of dental fluorosis is 28% (95% CI, 24, 32%, p < 0.001). Though, the concentration level varies across different part of the rift valley region, still the level of fluoride in ground drinking water is greater than the WHO standard value (1.5 mg/l). Relatively high-level pooled prevalence of dental fluorosis was also seen in Ethiopian rift valley. Therefore, further studies covering the temperature, exposure time and other intake path ways with large sample size is recommended. Interventional projects should be implemented to decrease the concentration of fluoride in the ground drinking water source.
Tài liệu tham khảo
Organization WH. Inadequate or excess fluoride: a major public health concern. Geneva: WHO Public Health and Environment; 2010.
Fawell J, Bailey K, Chilton J, Dahi E, Magara Y. Fluoride in drinking-water: IWA publishing; 2006.
Kloos H, Haimanot RT. Distribution of fluoride and fluorosis in Ethiopia and prospects for control. Trop Med Int Health. 1999;4(5):355–64.
Malago J, Makoba E, Muzuka AN. Fluoride levels in surface and groundwater in Africa: a review. Am J Water Sci Eng. 2017;3(1):1–17.
van Steenbergen F, Haimanot RT, Sidelil A. High Fluoride, Modest Fluorosis: Investigation in Drinking Water Supply in Halaba (SNNPR, Ethiopia). J Water Resour Prot. 2011;03(02):120–6. https://doi.org/10.4236/jwarp.2011.32014.
Petersen PE, Kwan S. Evaluation of community-based oral health promotion and oral disease prevention-WHO recommendations for improved evidence in public health practice. Community Dent Health. 2004;21(4):319–29.
Rango T, Kravchenko J, Atlaw B, McCornick PG, Jeuland M, Merola B, et al. Groundwater quality and its health impact: an assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. Environ Int. 2012;43:37–47.
Goodarzi F, Mahvi AH, Hosseini M, Nodehi RN, Kharazifard MJ, Parvizishad M. Fluoride concentration of drinking water and dental fluorosis: a systematic review and meta-analysis in Iran. Dental Hypotheses. 2016;7(3):81.
Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Møller KN, et al. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol. 2008;42(10):3662–8.
Ashagrie T. Total dietary fluoride intake and its observed health effect in young children: case of Bidara Fuka and Dibibisa Kebeles in SNNPR and Oromia regions; Ethiopian Rift Valley; 2011.
Rango T, Vengosh A, Jeuland M, Whitford GM, Tekle-Haimanot R. Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population. Sci Total Environ. 2018;596:1–11.
Rango T, Vengosh A, Jeuland M, Tekle-Haimanot R, Weinthal E, Kravchenko J, et al. Fluoride exposure from groundwater as reflected by urinary fluoride and children's dental fluorosis in the Main Ethiopian Rift Valley. Sci Total Environ. 2014;496:188–97.
Dey S, Giri B. Fluoride fact on human health and health problems: a review. Med Clin Rev. 2016;2(1–2):1–6.
Wondwossen F, Åstrøm AN, Bjorvatn K, Bårdsen A. The relationship between dental caries and dental fluorosis in areas with moderate-and high-fluoride drinking water in Ethiopia. Community Dent Oral Epidemiol. 2004;32(5):337–44.
Dessalegne M, Zewge F. Daily dietary fluoride intake in rural villages of the Ethiopian Rift Valley. Toxicol Environ Chem. 2013;95(6):1056–68.
Ramadan A, Ghandourb I. Dental fluorosis in two communities in Khartoum state, Sudan, with potable water fluoride levels of 1.36 and 0.45 mg/L. Fluoride. 2016;49(4):509–20.
Tekle-Haimanot R, Fekadu A, Bushera B, Mekonnen Y, editors. Fluoride levels in water and endemic fluorosis in Ethiopian Rift Valley. International Workshop on Fluorosis and Defluoridation of Water; 1995.
Haji M, Wang D, Li L, Qin D, Guo Y. Geochemical Evolution of Fluoride and Implication for F− Enrichment in Groundwater: Example from the Bilate River Basin of Southern Main Ethiopian Rift. Water. 2018;10(12):1799.
Kebede A, Retta N, Abuye C, Malde M. Community knowledge, attitude and practices (KAP) on fluorosis and its mitigation in endemic areas of Ethiopia. Afr J Food Agric Nutr Dev. 2016;16(1):10711–22.
Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, et al. The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ. 2005;367(1):182–90.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.
Furi W, Razack M, Abiye TA, Ayenew T, Legesse D. Fluoride enrichment mechanism and geospatial distribution in the volcanic aquifers of the middle awash basin, northern Main Ethiopian rift. J Afr Earth Sci. 2008;60(5):315–27.
Christopher J, Paul MAJ, Tewodros R. Godebod, Erika Weinthale communities coping with risks: household water choice and environmental health in the Ethiopian Rift Valley. Environ Sci Policy. 2018;86:85–94.
Redda T-H, Gebeyehu H. Chronic alcohol consumption and the development of skeletal fluorosis in a fluoride endemic area of the Ethiopian Rift Valley. J Water Resour Prot. 2014;6:149.
van Steenbergen F, Haimanot RT, Sidelil A. High Fluoride, Modest Fluorosis: Investigation in Drinking Water Supply in Halaba (SNNPR, Ethiopia). J Water Resour Prot. 2011;3:120–6.
Alemu ZA, Mengesha SD, Alemayehu TA, Serte MG, Kidane AW, Teklu KT. Retrospective Study of Fluoride Distribution in Ethiopian Drinking Water Sources. Asian J Appl Sci Eng. 2015;4(2):127–36.
Golgire G, Shetti S, Patil A, Khairnar M, Varekar A. Estimation of Fluoride Level in Drinking Water and Prevalence of Dental Fluorosis in Vairag Village of Solapur District, Maharashtra, India: A Cross Sectional Study. Epidemiology (Sunnyvale). 2016;6(275):2161–1165.1000275.
Keshavarz S, Ebrahimi A, Nikaeen M. Fluoride exposure and its health risk assessment in drinking water and staple food in the population of Dayyer, Iran, in 2013. J Educ Health Promot. 2015;4:72.
Aghapour S, Bina B, Tarrahi MJ, Amiri F, Ebrahimi A. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environ Monit Assess. 2018;190(3):137.
Nyanchaga EN, Bailey T. Fluoride contamination in drinking water in the Rift Valley, Kenya and evaluation of the efficiency of a locally manufactured defluoridation filter. J Civil Eng JKUAT. 2003;8(1):79–88.
Vuhahula E, Masalu J, Mabelya L, Wandwi W. Dental fluorosis in Tanzania great Rift Valley in relation to fluoride levels in water and in ‘Magadi’(Trona). Desalination. 2009;248(1–3):610–5.
Avocefohoun S, Gbaguidi A, Sina H, Biaou O, Houssou S, Baba-Moussa L. Fluoride in water intake and prevalence of dental fluorosis stains among children in Central Benin. Int J Med Res Health Sci. 2017;6(12):71–7.
Goodarzi F, Mahvi AH, Hosseini M, Nedjat S, Nodehi RN, Kharazifard MJ, et al. The prevalence of dental fluorosis and exposure to fluoride in drinking water: A systematic review. J Dent Res Dent Clin Dent Prospects. 2016;10(3):127.
Azami-Aghdash S, Ghojazadeh M, Azar FP, Naghavi-Behzad M, Mahmoudi M, Jamali Z. Fluoride concentration of drinking waters and prevalence of fluorosis in iran: a systematic review. J Dent Res Dent Clin Dent Prospects. 2013;7(1):1.