A boundary element formulation for the heterogeneous functionally graded viscoelastic structures
Tài liệu tham khảo
Fung, 2001
Sutradhar, 2008
Aliabadi, 2002
Paris, 1997
S. Suresh, A. Mortensen, Functionally Graded Materials, Institute of Materials, IOM Communications, London, 1998.
Miyamoto, 1999
Drozdov, 1998
Schanz, 1999, A boundary element formulation in time domain for viscoelastic solids, Commun. Numer. Methods Eng., 15, 799, 10.1002/(SICI)1099-0887(199911)15:11<799::AID-CNM294>3.0.CO;2-F
Pérez-Gavilán, 2001, A symmetric Galerkin boundary element method for dynamic frequency domain viscoelastic problems, Comput. Struct., 79, 2621, 10.1016/S0045-7949(01)00090-6
Huang, 2006, Complex variable boundary integral method for linear viscoelasticity, Eng. Anal. Boundary Elem., 30, 1049, 10.1016/j.enganabound.2005.12.007
Ashrafi, 2009, A mathematical boundary integral equation analysis of standard viscoelastic solid polymers, Comput. Math. Model., 20, 397, 10.1007/s10598-009-9046-x
Zhu, 2011, A fast multipole boundary element method for 2D viscoelastic problems, Eng. Anal. Boundary Elem., 35, 170, 10.1016/j.enganabound.2010.05.018
Ashrafi, 2012, Modeling of viscoelastic solid polymers using a boundary element formulation with considering a body load, Adv. Mater. Res., 463, 499, 10.4028/www.scientific.net/AMR.463-464.499
Yue, 2003, Boundary element analysis of crack problems in functionally graded materials, Int. J. Solids Struct., 40, 3273, 10.1016/S0020-7683(03)00094-5
Chan, 2004, Green’s function for a two–dimensional exponentially graded elastic medium, Proc. R. Soc. A, 460, 1689, 10.1098/rspa.2003.1220
Criado, 2007, Boundary element analysis of three-dimensional exponentially graded isotropic elastic solids, CMES – Comput. Model. Eng. Sci., 22, 151
Criado, 2008, Green’s function evaluation for three-dimensional exponentially graded elasticity, Int. J. Numer. Methods Eng., 74, 1560, 10.1002/nme.2223
Gao, 2008, Fracture analysis of functionally graded materials by a BEM, Compos. Sci. Technol., 68, 1209, 10.1016/j.compscitech.2007.08.029
Ashrafi, 2013, Two–dimensional modeling of heterogeneous structures using graded finite element and boundary element methods, Meccanica, 48, 663, 10.1007/s11012-012-9623-5
Mukherjee, 2003, The elastic-viscoelastic correspondence principle for functionally graded materials, revisited, J. Appl. Mech., 70, 359, 10.1115/1.1533805
Hilton, 2005, Optimum linear and nonlinear viscoelastic designer functionally graded materials—characterizations and analysis, Compos. Part A, 36, 1329, 10.1016/j.compositesa.2004.11.015
Khazanovich, 2008, The elastic–viscoelastic correspondence principle for non-homogeneous materials with time translation non-invariant properties, Int. J. Solids Struct., 45, 4739, 10.1016/j.ijsolstr.2008.04.011
Kamran, 2009, A multi–scale model for coupled heat conduction and deformations of viscoelastic functionally graded materials, Compos. Part B, 40, 511, 10.1016/j.compositesb.2009.02.003
Sladek, 2006, Meshless local Petrov–Galerkin method for continuously nonhomogeneous linear viscoelastic solids, Comput. Mech., 37, 279, 10.1007/s00466-005-0715-0
Dave, 2011, Viscoelastic functionally graded finite element method using correspondence principle, J. Mater. Civ. Eng., 23, 39, 10.1061/(ASCE)MT.1943-5533.0000006
Grasso, 2012, Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics, Eng. Anal. Boundary Elem., 36, 744, 10.1016/j.enganabound.2011.11.015
Zhu, 2010, Fast multipole boundary element analysis of 2D viscoelastic composites with imperfect interfaces, Sci. China Technol. Sci., 53, 2160, 10.1007/s11431-010-4023-3
Christensen, 1982
Mase, 1999
Flügge, 1975
Gao, 2002, The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Boundary Elem., 26, 905, 10.1016/S0955-7997(02)00039-5
Simo, 1997
Aliabadi, 2011
Asemi, 2013, Three-dimensional static and dynamic analysis of functionally graded elliptical plates, employing graded finite elements, Acta Mech., 224, 1849, 10.1007/s00707-013-0835-0