A diameter distribution model for even-aged beech in Denmark

Forest Ecology and Management - Tập 231 - Trang 218-225 - 2006
Thomas Nord-Larsen1, Quang V. Cao2
1Royal Veterinary and Agricultural University, Forest & Landscape, Hørsholm Kongevej 11, DK-2970 Hørsholm, Denmark
2School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA

Tài liệu tham khảo

Arfken, 1985, The gamma function (factorial function), 339 Bailey, 1980, Individual tree growth derived from diameter distribution models, Forest Sci., 26, 626 Bailey, 1989, Fertilized midrotation-aged slash pine plantations—stand structure and yield prediction models, South. J. Appl. For., 13, 13, 10.1093/sjaf/13.2.76 Bailey, 1973, Quantifying diameter distributions with the Weibull function, Forest Sci., 19, 97 Bliss, 1964, A lognormal approach to diameter distributions in even-aged stands, Forest Sci., 10, 350 Borders, 1990, Projecting stand tables: a comparison of the Weibull diameter distribution method, a percentile-based projection method, and a basal area growth projection method, Forest Sci., 36, 413 Burk, 1984, A simple algorithm for moment-based recovery of Weibull distribution parameters, Forest Sci., 30, 329 Cao, 2004, Predicting parameters of a Weibull function for modelling diameter distribution, Forest Sci., 50, 682 Cao, 1999, A new algorithm for stand table projection models, Forest Sci., 45, 506 Carbonnier, 1971, Bokens produktion i Södra Sverige, Studia Forestalia Suecica, 91, 1 Chen, 2004, Tree size distribution functions of four boreal forest types for biomass mapping, Forest Sci., 50, 436 Clutter, J.L., Bennett, F.A., 1965. Diameter distribution in old-field slash pine plantations. Report 13, Ga. For. Res. Counc., 9 p. de Liocourt, F., 1898. De l’aménagement des sapinières. Bulletin trimestriel 4, Société Forestière de Franche-Comté et Belfort, 645 p. Hafley, 1985, A bivariate model for growth and yield prediction, Forest Sci., 31, 237 Johannsen, V.K., 2002. Selection of diameter-height curves for even-aged oak stands in Denmark. Dynamic growth models for Danish forest tree species, Working paper 16, Danish Forest and Landscape Research Institute, Hørsholm, Denmark, 70 p. Kennel, 1972 Knowe, 1994, Eastern cottonwood clonal mixing study: predicted diameter distributions, Can. J. Forest Res., 24, 405, 10.1139/x94-054 Knowe, 1995, Predicting the effects of site preparation and protection on development of young Douglas-fir plantations, Can. J. Forest Res., 25, 1538, 10.1139/x95-167 Kraft, 1884 Liu, 2002, A finite mixture model for characterizing the diameter distribution of mixed-species forest stands, Forest Sci., 48, 653 Matney, 1982, Compatible stand and stock tables for thinned and unthinned loblolly pine stands, Forest Sci., 28, 161 Meyer, 1933, Eine matematisch-statistiche Untersuchung über den Aufbau des Plenterwaldes, Schweizerische Zeitschrift für Forstwesen, 84, 33 Møller, 1933, Boniteringstabeller og Bonitetsvise Tilvækstoversigter for Bøg, Eg og rødgran i Danmark, Dansk Skovforenings Tidsskrift, 18, 537 Näslund, 1936, Skogsforsöksastaltens gallringsforsök i tallskog, Meddelanden från Statens Skogsforsöksanstalt, 29, 1 Nelson, 1964, Diameter distribution and growth of loblolly pine, Forest Sci., 10, 105 Nepal, 1992, A mathematical approach to stand table projection, Forest Sci., 38, 120 Newton, 2005, Stand-level diameter distribution yield model for black spruce plantations, Forest Ecol. Manage., 209, 181, 10.1016/j.foreco.2005.01.020 Pienaar, 1988, A stand table projection approach to yield prediction in unthinned even-aged stands, Forest Sci., 34, 804 Pretzsch, 2002, The single tree-based stand simulator SILVA: construction, application and evaluation, Forest Ecol. Manage., 162, 3, 10.1016/S0378-1127(02)00047-6 Prodan, 1953, Die Verteilung des Vorrates gleichaltriger Hochwaldbestände auf Durchmesserstufen, Allgemeine Forst – und Jagdzeitung, 124, 93 Rennolls, 2005, A new parameterization of Johnson’s SB distribution with application to fitting forest tree diameter data, Can. J. Forest Res., 35, 575, 10.1139/x05-006 Reynolds, 1988, Goodness-of-fit tests and model selection procedures for diameter distribution models, Forest Sci., 34, 373 Richards, 1959, A flexible growth equation for empirical use, J. Exp. Bot., 10, 290, 10.1093/jxb/10.2.290 Sarkkola, 2005, Stand structural dynamics on drained peatlands dominanted by Scots pine, Forest Ecol. Manage., 206, 135, 10.1016/j.foreco.2004.10.064 Schober, 1972 Schreuder, 1979, Yield prediction for unthinned natural slash pine stands, Forest Sci., 25, 25 Scolforo, 2003, SB distributions’s accuracy to represent the diameter distribution of Pinus taeda, through five different fitting methods, Forest Ecol. Manage., 175, 489, 10.1016/S0378-1127(02)00183-4 Siipilehto, 1999, Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number, Silva Fennica, 33, 281, 10.14214/sf.650 Skovsgaard, 1997 Stephens, 1977, Goodness-of-fit for the extreme value distribution, Biometrika, 64, 583, 10.1093/biomet/64.3.583 Tham, 1988, Structure of mixed Picea abies (L.) Karst. and Betula pendula Roth. and Betula pubescens Ehrh. stands in south and middle Sweden, Scand. J. Forest Res., 3, 355, 10.1080/02827588809382523 von Gadow, 1984, Die Erfassung von Durchmesserverteilungen in gleichaltrigen Kiefernbeständen, Forstwissenschaftliches Centralblatt, 103, 360, 10.1007/BF02744248 Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293, 10.1115/1.4010337