Non-compact quantum groups associated with Abelian subgroups

Springer Science and Business Media LLC - Tập 171 - Trang 181-201 - 1995
Marc A. Rieffel1
1Department of Mathematics, University of California, Berkeley, USA

Tóm tắt

LetG be a Lie group. For any Abelian subalgebra $$\mathfrak{h}$$ of the Lie algebra g ofG, and any $$r \in \mathfrak{h}\Lambda \mathfrak{h}$$ , the difference of the left and right translates ofr gives a compatible Poisson bracket onG. We show how to construct the corresponding quantum group, in theC *-algebra setting. The main tool used is the general deformation quantization construction developed earlier by the author for actions of vector groups onC *-algebras.

Tài liệu tham khảo

[AST] Artin, M., Schelter, W., Tate, J.: Quantum Deformation ofGL n . Comm. Pure Appl. Math.44, 1991 879–895

[B1] Baaj, S.: Representation régulière du groupe quantiqueE μ(2). C. R. Acad. Sci Paris314, 1021–1026 (1992)

[B2] Baaj, S.: Représentation régulière du groupe quantique des deplacements de Woronowicz. Preprint

[BS] Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés deC *-algèbres. Ann. Sci. Ec. Norm. Sup.26, 425–488 (1993)

[D1] Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR268, 285–287 (1983) (Russian); English transl. in Soviet Math. Dokl.27, 68–71 (1983)

[D2] Drinfeld, V. G.: On constant, quasiclassical solutions of the Yang-Baxter quantum equation. Dokl. Akad. Nauk SSSR273, 531–535 (1983) (Russian); English transl. in Soviet Math. Dokl.28 667–671 (1983)

[D3] Drinfeld, V. G.: Quantum groups. Proc. International Congress Math., Berkeley 1986, Providence, RI: Am. Math. Soc. 1987, pp. 798–820

[D4] Drinfeld, V. G.: Quasi-Hopf algebras. Algebra and Analysis1, (1989) (Russian); English transl. in Leningrad Math. J.1 1419–1457 (1990)

[ER] Effros, E. G., Ruan, Z.-J.: Operator convolution algebras: An approach to quantum groups. Preprint

[GS1] Gerstenhaber, M., Giaquinto, A., Schack, S. D.: Quantum symmetry. Quantum Groups, Lecture Notes Math.1510, 1991 New York: Springer Verlag, pp. 9–46

[GS2] Gerstenhaber, M., Giaquinto, A., Schack, S. D.: Quantum groups, cohomology, and preferred deformations. Proc. XX Conference on Differential Geometric Techniques in Mathematical Physics (S. Catto, and A. Rocha eds.), Singapore. World Scientific 1992, pp. 529–538

[GS3] Gerstenhaber M., Giaquinto, A., Schack, S. D.: Construction of quantum groups from Belavin-Drinfeld infinitesimals. Quantum Deformations of Algebras and their Representations Israel Math. Conf. Proc.7, Providence, R. I. Am. Math. Soc. 1993, pp. 45–64

[Gq] Giaquinto, A.: Quantization of tensor representations and deformations of matrix bialgebras. J. Pure Appl. Alg.79, 169–190 (1992)

[GM] Gurevich, D., Majid, S.: Braided groups of Hopf algebras obtained by twisting. Pacific J. Math.169, 27–44 (1994)

[GRZ] Gurevich, D., Rubtsov, V., Zobin, N.: Quantization of Poisson paris: TheR-matrix approach. J. Geom. Phys.9, 25–44 (1992)

[I] Iorio, V.: HopfC *-algebras and locally compact groups. Pacific J. Math.87, 75–96 (1980)

[L] Landstad, M. B.: Quantizations arising from Abelian subgroups. Preprint

[LR] Landstad, M. B.: Raeburn, I.: Twisted dual-group algebras: Equivariant deformations ofC 0 (G). J., Funct. Anal., to appear

[LS] Levendorskii, S., Soibelman, Y.: Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys.139, 141–170 (1991)

[M] Majid, S.: Braided groups. J. Pure Appl. Algebra86, 187–221 (1993)

[Pe] Pedersen, G. K.:C *-algebras and their automorphism groups. London Math. Soc. Monographs14, London Academic Press, 1979

[PW] Podles, P., Woronowicz, S. I.: Quantum deformation of Lorentz group. Comm. Math. Phys.130, 381–431 (1990)

[Re] Reshetikhin, N.: Quantization of bialgebras. Duke Math. J.7, 143–151 (1992)

[Rf1] Rieffel, M. A.: Soine solvable quantum groups. Operator Algebras and Topology, Pitman Research Notes Math.270 (W. B. Arveson, A. S. Mischenko, M. Putinar, M. A. Rieffel, and S. Stratila, ed.) Proc. OATE2 Conf: Romania 1989, Burnt Mill, England: Longman 1992, pp. 146–159

[Rf2] Rieffel, M. A.: Deformation quantization for actions ofR d. Memoris A. M. S.506, Providence, RI: Am. Math. Soc. 1993

[Rf3] Rieffel, M. A.:K-theory forC *-algebras deformed by actions ofR d. J. Funct. Anal.116, (1993) 119–214

[Rf4] Rieffel, M. A.: Compact quantum groups associated with toral subgroups. Representation Theory of Groups and Algebras (J. Adams, R. Herb, S. Kudla, J.-S. Li, R. L. Lipsman, J. Rosenberg, eds.). Contemp. Math.145, Providence RI: Am. Math. Soc. 1993, pp. 465–491

[Rf5] Rieffel, M. A.: Quantization andC *-algebras,C *-algebras: 1943–1993 A Fifty Year Celebration, Contemp. Math.167, 67–96 (1994)

[Rf6] Rieffel, M. A.: SIN-subgroups of Lie groups. In preparation

[Rf7] Rieffel, M. A.: Frèchet quantum groups associated with Abelian subgroups. In preparation

[Sc] Schweitzer, L.: Densem-convex Fréchet subalgebras of operator algebra crossed products by Lie groups. Intern. J. Math.4, 601–673 (1993)

[Sh] Sheu, A. J.-L.: Leaf-preserving quantizations of PoissonSU(2) are not coalgebra homomorphisms. Preprint

[SZ] Szymczak, I., Zakrzewski, S.: Quantum deformations of the Heisenberg group obtained by geometric quantization. J. Geom. Physics7, 553–569 (1990)

[Tk1] Takhtajan, L. A.: Introduction to quantum groups. Lecture Notes in Physics370 Berlin-New York: Springer-Verlag, 1990 pp. 3–28

[Tk2] Takhtajan, L. A.: Lectures on quantum groups. Introduction to quantum groups and integrable massive models of quantum field theory, Singapore-New Jersey-London-Hong Kong: World Scientific, 1990, pp. 69–197

[TV1] Truini, P., Varadarajan, V. S.: Universal deformations of reductive Lie algebras. Lett. Math. Phys.26, 53–65 (1992)

[TV2] Truini, P., Varadarajan, V. S.: Quantization of reductive Lie algebras: Construction and universality. Rev. Math. Phys..5, 363–415 (1993)

[V] Vainerman, L.: Quantum groups associated with Abelian subgroups and Kac algebras. Preliminary version

[VS] Vaksman, L., Soibelman, Ya.: The algebra of functions on the quantum groupSU(2). Funkts. Anal. Pril.22, 1–14 (1988) (Russian); English transl. in Funct Anal. Appl.22, 170–181 (1988)

[V1] Vallin, J.-M.:C *-algèbres de Hopf etC *-algèbres de Kac. Proc. London Math. Soc.50, 131–174 (1985)

[Vn1] Van Daele, A.: A quantum deformation of the Heisenberg group. Proc. Satellite Conf. ICM-90, World Sci., Singapore: 1991, pp. 314–325

[Vn2] Van Daele, A.: Multiplier Hopf algebras Trans. Am. Math. Soc.342, 917–932 (1994)

[Vn3] Van Daele, A.: The Haar measure on a compact quantum group. Preprint

[Vn4] Van Daele, A.: Locally compact quantum groups: The discrete case. Preliminary version

[Vr] Varadarajan, V. S.: Lie Groups, Lie Algebras and their Representations. Englewood Cliffs, NJ: Prentice-Hall, 1974

[Wa1] Wang, S.: General Constructions of Compact Quantum Groups. Ph.D. Thesis, University of California, Berkeley, 1993

[Wa2] Wang, S.: Free product of compact quantum groups. Preprint

[Wa3] Wang, S.: Deformations of compact quantum groups via Rieffel's quantization. Preliminary version

[Wr1] Woronowicz, S. L.: Pseudospaces, pseudogroups, and Pontryagin duality. Proc. International Conference Math. Phys., Lausanne 1979, Lect. Notes Phys, vol.116, Berlin, Heidelberg-New York: Springer-Verlag, pp. 407–412

[Wr2] Woronowicz, S. L.: TwistedSU(2). An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. Kyoto23, 117–181 (1987)

[Wr3] Woronowicz, S. L.: Compact matrix pseudogroups. Comm. Math. Phys.111, 613–665 (1987)

[Wr4] Woronowicz, S. L.: Unbounded elements affiliated withC *-algebras and non-compact quantum groups. Comm. Math. Phys.136, 399–432 (1991)

[Wr5] Woronowicz, S. L.: Quantum E(2) group and its Pontryagin dual. Lettt. Math. Phys.23, 251–263 (1991)

[Wr6] Woronowicz, S. L.: Operator equalities related to the quantum E(2) group, Comm. Math. Phys.144, 417–428 (1992)

[Wr7] Woronowicz, S. L.: QuantumSU(2) and E(2) groups. Contraction procedure. Comm. Math. Phys.149, 637–652 (1992)

[Wr8] Woronowicz, S. L.: Compact quantum groups. Preliminary verison

[WZ] Woronowicz, S. L., Zakrzewski, S.: Quantum Lorentz group having Gauss decomposition property. Publ. RIMS Kyoto U.28 809–824 (1992)

[Z] Zakrzewski, S.: Geometric quantization of Poisson groups-diagonal and soft deformations. Contemporary Math.179, 271–285 (1994)