Non-compact quantum groups associated with Abelian subgroups
Tóm tắt
Tài liệu tham khảo
[AST] Artin, M., Schelter, W., Tate, J.: Quantum Deformation ofGL n . Comm. Pure Appl. Math.44, 1991 879–895
[B1] Baaj, S.: Representation régulière du groupe quantiqueE μ(2). C. R. Acad. Sci Paris314, 1021–1026 (1992)
[B2] Baaj, S.: Représentation régulière du groupe quantique des deplacements de Woronowicz. Preprint
[BS] Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés deC *-algèbres. Ann. Sci. Ec. Norm. Sup.26, 425–488 (1993)
[D1] Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR268, 285–287 (1983) (Russian); English transl. in Soviet Math. Dokl.27, 68–71 (1983)
[D2] Drinfeld, V. G.: On constant, quasiclassical solutions of the Yang-Baxter quantum equation. Dokl. Akad. Nauk SSSR273, 531–535 (1983) (Russian); English transl. in Soviet Math. Dokl.28 667–671 (1983)
[D3] Drinfeld, V. G.: Quantum groups. Proc. International Congress Math., Berkeley 1986, Providence, RI: Am. Math. Soc. 1987, pp. 798–820
[D4] Drinfeld, V. G.: Quasi-Hopf algebras. Algebra and Analysis1, (1989) (Russian); English transl. in Leningrad Math. J.1 1419–1457 (1990)
[ER] Effros, E. G., Ruan, Z.-J.: Operator convolution algebras: An approach to quantum groups. Preprint
[GS1] Gerstenhaber, M., Giaquinto, A., Schack, S. D.: Quantum symmetry. Quantum Groups, Lecture Notes Math.1510, 1991 New York: Springer Verlag, pp. 9–46
[GS2] Gerstenhaber, M., Giaquinto, A., Schack, S. D.: Quantum groups, cohomology, and preferred deformations. Proc. XX Conference on Differential Geometric Techniques in Mathematical Physics (S. Catto, and A. Rocha eds.), Singapore. World Scientific 1992, pp. 529–538
[GS3] Gerstenhaber M., Giaquinto, A., Schack, S. D.: Construction of quantum groups from Belavin-Drinfeld infinitesimals. Quantum Deformations of Algebras and their Representations Israel Math. Conf. Proc.7, Providence, R. I. Am. Math. Soc. 1993, pp. 45–64
[Gq] Giaquinto, A.: Quantization of tensor representations and deformations of matrix bialgebras. J. Pure Appl. Alg.79, 169–190 (1992)
[GM] Gurevich, D., Majid, S.: Braided groups of Hopf algebras obtained by twisting. Pacific J. Math.169, 27–44 (1994)
[GRZ] Gurevich, D., Rubtsov, V., Zobin, N.: Quantization of Poisson paris: TheR-matrix approach. J. Geom. Phys.9, 25–44 (1992)
[I] Iorio, V.: HopfC *-algebras and locally compact groups. Pacific J. Math.87, 75–96 (1980)
[L] Landstad, M. B.: Quantizations arising from Abelian subgroups. Preprint
[LR] Landstad, M. B.: Raeburn, I.: Twisted dual-group algebras: Equivariant deformations ofC 0 (G). J., Funct. Anal., to appear
[LS] Levendorskii, S., Soibelman, Y.: Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys.139, 141–170 (1991)
[M] Majid, S.: Braided groups. J. Pure Appl. Algebra86, 187–221 (1993)
[Pe] Pedersen, G. K.:C *-algebras and their automorphism groups. London Math. Soc. Monographs14, London Academic Press, 1979
[PW] Podles, P., Woronowicz, S. I.: Quantum deformation of Lorentz group. Comm. Math. Phys.130, 381–431 (1990)
[Re] Reshetikhin, N.: Quantization of bialgebras. Duke Math. J.7, 143–151 (1992)
[Rf1] Rieffel, M. A.: Soine solvable quantum groups. Operator Algebras and Topology, Pitman Research Notes Math.270 (W. B. Arveson, A. S. Mischenko, M. Putinar, M. A. Rieffel, and S. Stratila, ed.) Proc. OATE2 Conf: Romania 1989, Burnt Mill, England: Longman 1992, pp. 146–159
[Rf2] Rieffel, M. A.: Deformation quantization for actions ofR d. Memoris A. M. S.506, Providence, RI: Am. Math. Soc. 1993
[Rf3] Rieffel, M. A.:K-theory forC *-algebras deformed by actions ofR d. J. Funct. Anal.116, (1993) 119–214
[Rf4] Rieffel, M. A.: Compact quantum groups associated with toral subgroups. Representation Theory of Groups and Algebras (J. Adams, R. Herb, S. Kudla, J.-S. Li, R. L. Lipsman, J. Rosenberg, eds.). Contemp. Math.145, Providence RI: Am. Math. Soc. 1993, pp. 465–491
[Rf5] Rieffel, M. A.: Quantization andC *-algebras,C *-algebras: 1943–1993 A Fifty Year Celebration, Contemp. Math.167, 67–96 (1994)
[Rf6] Rieffel, M. A.: SIN-subgroups of Lie groups. In preparation
[Rf7] Rieffel, M. A.: Frèchet quantum groups associated with Abelian subgroups. In preparation
[Sc] Schweitzer, L.: Densem-convex Fréchet subalgebras of operator algebra crossed products by Lie groups. Intern. J. Math.4, 601–673 (1993)
[Sh] Sheu, A. J.-L.: Leaf-preserving quantizations of PoissonSU(2) are not coalgebra homomorphisms. Preprint
[SZ] Szymczak, I., Zakrzewski, S.: Quantum deformations of the Heisenberg group obtained by geometric quantization. J. Geom. Physics7, 553–569 (1990)
[Tk1] Takhtajan, L. A.: Introduction to quantum groups. Lecture Notes in Physics370 Berlin-New York: Springer-Verlag, 1990 pp. 3–28
[Tk2] Takhtajan, L. A.: Lectures on quantum groups. Introduction to quantum groups and integrable massive models of quantum field theory, Singapore-New Jersey-London-Hong Kong: World Scientific, 1990, pp. 69–197
[TV1] Truini, P., Varadarajan, V. S.: Universal deformations of reductive Lie algebras. Lett. Math. Phys.26, 53–65 (1992)
[TV2] Truini, P., Varadarajan, V. S.: Quantization of reductive Lie algebras: Construction and universality. Rev. Math. Phys..5, 363–415 (1993)
[V] Vainerman, L.: Quantum groups associated with Abelian subgroups and Kac algebras. Preliminary version
[VS] Vaksman, L., Soibelman, Ya.: The algebra of functions on the quantum groupSU(2). Funkts. Anal. Pril.22, 1–14 (1988) (Russian); English transl. in Funct Anal. Appl.22, 170–181 (1988)
[V1] Vallin, J.-M.:C *-algèbres de Hopf etC *-algèbres de Kac. Proc. London Math. Soc.50, 131–174 (1985)
[Vn1] Van Daele, A.: A quantum deformation of the Heisenberg group. Proc. Satellite Conf. ICM-90, World Sci., Singapore: 1991, pp. 314–325
[Vn2] Van Daele, A.: Multiplier Hopf algebras Trans. Am. Math. Soc.342, 917–932 (1994)
[Vn3] Van Daele, A.: The Haar measure on a compact quantum group. Preprint
[Vn4] Van Daele, A.: Locally compact quantum groups: The discrete case. Preliminary version
[Vr] Varadarajan, V. S.: Lie Groups, Lie Algebras and their Representations. Englewood Cliffs, NJ: Prentice-Hall, 1974
[Wa1] Wang, S.: General Constructions of Compact Quantum Groups. Ph.D. Thesis, University of California, Berkeley, 1993
[Wa2] Wang, S.: Free product of compact quantum groups. Preprint
[Wa3] Wang, S.: Deformations of compact quantum groups via Rieffel's quantization. Preliminary version
[Wr1] Woronowicz, S. L.: Pseudospaces, pseudogroups, and Pontryagin duality. Proc. International Conference Math. Phys., Lausanne 1979, Lect. Notes Phys, vol.116, Berlin, Heidelberg-New York: Springer-Verlag, pp. 407–412
[Wr2] Woronowicz, S. L.: TwistedSU(2). An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. Kyoto23, 117–181 (1987)
[Wr3] Woronowicz, S. L.: Compact matrix pseudogroups. Comm. Math. Phys.111, 613–665 (1987)
[Wr4] Woronowicz, S. L.: Unbounded elements affiliated withC *-algebras and non-compact quantum groups. Comm. Math. Phys.136, 399–432 (1991)
[Wr5] Woronowicz, S. L.: Quantum E(2) group and its Pontryagin dual. Lettt. Math. Phys.23, 251–263 (1991)
[Wr6] Woronowicz, S. L.: Operator equalities related to the quantum E(2) group, Comm. Math. Phys.144, 417–428 (1992)
[Wr7] Woronowicz, S. L.: QuantumSU(2) and E(2) groups. Contraction procedure. Comm. Math. Phys.149, 637–652 (1992)
[Wr8] Woronowicz, S. L.: Compact quantum groups. Preliminary verison
[WZ] Woronowicz, S. L., Zakrzewski, S.: Quantum Lorentz group having Gauss decomposition property. Publ. RIMS Kyoto U.28 809–824 (1992)
[Z] Zakrzewski, S.: Geometric quantization of Poisson groups-diagonal and soft deformations. Contemporary Math.179, 271–285 (1994)