A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data

Genomics Data - Tập 8 - Trang 4-15 - 2016
Rabia Aziz1, C.K. Verma1, Namita Srivastava1
1Department of Mathematics & Computer Application, Maulana Azad National Institute of Technology, Bhopal, 462003, MP, India

Tài liệu tham khảo

Fan, 2009, A sequential feature extraction approach for Naïve Bayes classification of microarray data, Expert Syst. Appl., 36, 9919, 10.1016/j.eswa.2009.01.075 Vilda, 2006, Robust preprocessing of gene expression microarrays for independent component analysis, 714 Zheng, 2006, Feature selection in independent component subspace for microarray data classification, Neurocomputing, 69, 2407, 10.1016/j.neucom.2006.02.006 Peng, 2006, A novel ensemble machine learning for robust microarray data classification, Comput. Biol. Med., 36, 553, 10.1016/j.compbiomed.2005.04.001 Hammer, 2003, Mathematical aspects of neural networks, 59 Du, 2014, A novel forward gene selection algorithm for microarray data, Neurocomputing, 133, 446, 10.1016/j.neucom.2013.12.012 Gutkin, 2008 Tang, 2005, Feature selection for microarray data using least squares svm and particle swarm optimization, 1 Bartenhagen, 2010, Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinf., 11, 567, 10.1186/1471-2105-11-567 Frigyesi, 2006, Independent component analysis reveals new and biologically significant structures in micro array data, BMC Bioinf., 7, 290, 10.1186/1471-2105-7-290 Zheng, 2008, Gene expression data classification using consensus independent component analysis, Genomics Proteomics Bioinformatics, 6, 74, 10.1016/S1672-0229(08)60022-4 Mohan, 2014, Automatic classification of protein structures using physicochemical parameters, Interdiscip. Sci.: Comput. Life Sci., 6, 176, 10.1007/s12539-013-0199-0 Fan, 2010, Partition-conditional ICA for Bayesian classification of microarray data, Expert Syst. Appl., 37, 8188, 10.1016/j.eswa.2010.05.068 Patil, 2013, Performance analysis of Naive Bayes and J48 classification algorithm for data classification, Int. J. Comput. Sci. Appl., 6, 256 Zhang, 2005, Exploring conditions for the optimality of naive Bayes, Int. J. Pattern Recognit. Artif. Intell., 19, 183, 10.1142/S0218001405003983 Statnikov, 2013, A comprehensive evaluation of multicategory classification methods for microbiomic data, Microbiome, 1, 11, 10.1186/2049-2618-1-11 Chakraborty, 2011, A Bayesian hybrid Huberized support vector machine and its applications in high-dimensional medical data, Comput. Stat. Data Anal., 55, 1342, 10.1016/j.csda.2010.09.024 Hyvärinen, 1997, A fast fixed-point algorithm for independent component analysis, Neural Comput., 9, 1483, 10.1162/neco.1997.9.7.1483 Naik, 2011, An overview of independent component analysis and its applications, Informatica, 35, 63 Engreitz, 2010, Independent component analysis: mining microarray data for fundamental human gene expression modules, J. Biomed. Inform., 43, 932, 10.1016/j.jbi.2010.07.001 Kong, 2008, A review of independent component analysis application to microarray gene expression data, Biotechniques, 45, 501, 10.2144/000112950 Hyvärinen, 2004 Capobianco, 2004 Luukka, 2011, Feature selection using fuzzy entropy measures with similarity classifier, Expert Syst. Appl., 38, 4600, 10.1016/j.eswa.2010.09.133 Parkash, 2010, Applications of trigonometric measures of fuzzy entropy to geometry, Int. J. Math. Comput. Sci., 6, 76 Cesar, 2012 Lee, 2001, An efficient fuzzy classifier with feature selection based on fuzzy entropy, IEEE Trans. Syst. Man Cybern. B Cybern., 31, 426, 10.1109/3477.931536 Pochet, 2004, Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction, Bioinformatics, 20, 3185, 10.1093/bioinformatics/bth383 Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018 Vapnik, 1998 Mukherjee, 1999, 170 Boser, 1992, A training algorithm for optimal margin classifiers, 144 Jan, 1996 Kostka, 2008, Feature extraction based on time-frequency and independent component analysis for improvement of separation ability in atrial fibrillation detector, 2960 Hsu, 2010, Integrating independent component analysis and support vector machine for multivariate process monitoring, Comput. Ind. Eng., 59, 145, 10.1016/j.cie.2010.03.011 DURGESH, 2010, Data classification using support vector machine, J.Theor. Appl. Inf. Technol., 12, 1 Huang, 2007, ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data, Biosystems, 90, 516, 10.1016/j.biosystems.2006.12.003 Langley, 1992, An analysis of Bayesian classifiers, 223 Friedman, 1997, Bayesian network classifiers, Mach. Learn., 29, 131, 10.1023/A:1007465528199 John, 1995, Estimating continuous distributions in Bayesian classifiers, 338 Chen, 2009, Feature selection for text classification with Naïve Bayes, Expert Syst. Appl., 36, 5432, 10.1016/j.eswa.2008.06.054 Sandberg, 2001, Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier, Genome Res., 11, 1404, 10.1101/gr.186401 De Campos, 2011, Bayesian networks classifiers for gene-expression data, 1200 Ji, 2002, A Bayesian classification method for treatments using microarray gene expression data Alon, 1999, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Natl. Acad. Sci., 96, 6745, 10.1073/pnas.96.12.6745 Golub, 1999, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286, 531, 10.1126/science.286.5439.531 Singh, 2002, Gene expression correlates of clinical prostate cancer behavior, Cancer Cell, 1, 203, 10.1016/S1535-6108(02)00030-2 Gordon, 2002, Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma, Cancer Res., 62, 4963 Nutt, 2003, Gene expression-based classification of malignant gliomas correlates better with survival than histological classification, Cancer Res., 63, 1602 Hira, 2015 Nahar, 2007, Microarray data classification using automatic SVM kernel selection, DNA Cell Biol., 26, 707, 10.1089/dna.2007.0590 Aziz, 2015, t-Independent component analysis for SVM classification of DNA — microarray data, Int. J. Bioinforma. Res., 6, 305 http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml. http://in.mathworks.com/matlabcentral/fileexchange/31366-feature-selection-using-fuzzyentropy-measures-and-similarity.