Những tiến bộ gần đây trong lựa chọn hỗ trợ bằng dấu hiệu phân tử và ứng dụng trong các chương trình cải tạo cây trồng

Nazarul Hasan1, Sana Choudhary1, Neha Naaz1, Nidhi Sharma1, Rafiul Amin Laskar2
1Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, India
2Department of Botany, Bahona College, Jorhat, India

Tóm tắt

Các dấu hiệu DNA đã cải thiện năng suất và độ chính xác của phương pháp cải tạo cây trồng cổ điển thông qua lựa chọn hỗ trợ bằng dấu hiệu (MAS). Số lượng lớn các vị trí tính trạng định lượng (QTLs) được xác định cho các loài thực vật khác nhau đã cung cấp nhiều mối liên hệ giữa dấu hiệu phân tử và gen. Trong bài đánh giá này, chúng tôi đã thảo luận về các khía cạnh tích cực của lựa chọn hỗ trợ bằng dấu hiệu phân tử và những ứng dụng chính xác của nó trong các chương trình cải tạo cây trồng. Lựa chọn hỗ trợ bằng dấu hiệu phân tử đã rút ngắn đáng kể thời gian đưa ra các giống cây mới ra thị trường. Để khám phá thông tin về các dấu hiệu DNA, nhiều bài đánh giá đã được công bố trong vài thập kỷ qua; tất cả những bài đánh giá này nhằm giúp các nhà cải tạo thực vật thu thập thông tin về di truyền phân tử. Trong bài đánh giá này, chúng tôi muốn tổng hợp các phát triển gần đây của các dấu hiệu DNA và ứng dụng của chúng trong các chương trình cải tạo cây trồng, dành cho các nhà cải tạo mới bắt đầu với ít hoặc không có kiến thức về các dấu hiệu DNA. Các tiến bộ trong cải tạo cây trồng phân tử, di truyền học thực vật, lựa chọn genomics, và chỉnh sửa bộ gen đã đóng góp vào sự hiểu biết toàn diện về các dấu hiệu DNA và cung cấp nhiều chứng cứ về sự đa dạng di truyền có sẵn trong các loài cây nông nghiệp, đồng thời bổ sung đáng kể cho các công cụ cải tạo cây trồng. MAS đã cách mạng hóa quy trình cải tạo cây trồng bằng cách tăng tốc và độ chính xác, liên tục trao quyền cho các nhà cải tạo cây trồng trên toàn thế giới.

Từ khóa

#dấu hiệu DNA #lựa chọn hỗ trợ bằng dấu hiệu #cải tạo cây trồng #di truyền phân tử #QTLs

Tài liệu tham khảo

Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308. https://doi.org/10.1073/pnas.0912953109 Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. https://doi.org/10.1038/nature01014 Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot 68(12):3129–3143. https://doi.org/10.1093/jxb/erx142 Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3(2):138–147. https://doi.org/10.1007/s12284-010-9048-5 Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806. https://doi.org/10.1126/science.270.5243.1804 Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172(3):1901–1914. https://doi.org/10.1534/genetics.105.044891 Ji H, Kim SR, Kim YH, Suh JP, Park HM, Sreenivasulu N, Misra G, Kim SM, Hechanova SL, Kim H, Lee GS, Yoon UH, Kim TH, Lim H, Suh SC, Yang J, An G, Jena KK (2016) Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci Rep 6(1):34376. https://doi.org/10.1038/srep34376 Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487 Li JY, Wang J, Zeigler RS (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research. Gigascience 3(1):2047–217X Yonemaru J, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M (2010) Q-TARO: QTL annotation rice online database. Rice 3(2-3):194–203. https://doi.org/10.1007/s12284-010-9041-z Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263(4):681–689. https://doi.org/10.1007/s004380051217 Mohler V, Singrün C (2004) General considerations: marker-assisted selection. In: Molecular marker systems in plant breeding and crop improvement. Springer, Berlin, Heidelberg, pp 305–317 Yang HB, Kang WH, Nahm SH, Kang BC (2015) Methods for developing molecular markers. In: Current technologies in plant molecular breeding. Springer, Dordrecht, pp 15–50 Madhumati B (2014) Potential and application of molecular markers techniques for plant genome analysis. Int J Pure App Biosci 2(1):169–188 Freeland JR (2017) The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60(4):358–374. https://doi.org/10.1139/gen-2016-0100 Park J, Suh Y, Kim S (2020) A complete chloroplast genome sequence of Gastrodia elata (Orchidaceae) represents high sequence variation in the species. Mitochondrial DNA B 5(1):517–519. https://doi.org/10.1080/23802359.2019.1710588 Ashkani S, Rafii M, Sariah M, Akmar AS, Rusli I, Rahim HA, Latif M (2011) Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res 10(3):1345–1355. https://doi.org/10.4238/vol10-3gmr1331 Shanti ML, Shenoy VV, Devi GL, Kumar VM, Premalatha P, Kumar GN, Shashidhar HE, Zehr UB, Freeman WH (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. J Plant Pathol 92(2):495–501 Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379 Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7(5):e37135. https://doi.org/10.1371/journal.pone.0037135 Bourgeois Y, Boissinot S (2019) On the population dynamics of junk: A review on the Population Genomics of Transposable Elements. Genes 10(6):419. https://doi.org/10.3390/genes10060419 Gao B, Shen D, Xue S, Chen C, Cui H, Song C (2016) The contribution of transposable elements to size variations between four teleost genomes. Mob DNA 7(1):4. https://doi.org/10.1186/s13100-016-0059-7 Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37(9):997–1002. https://doi.org/10.1038/ng1615 Negi P, Rai AN, Suprasanna P (2016) Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front Plant Sci 7:1448 Roy NS, Choi JY, Lee SI, Kim NS (2015) Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes Genom 37(2):141–151. https://doi.org/10.1007/s13258-014-0252-3 Fan F, Cui B, Zhang T, Ding G, Wen X (2014) LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of masson pine (Pinus massoniana). Tree Genet Genomes 10(1):213–222. https://doi.org/10.1007/s11295-013-0677-x Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631 Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon-based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10(1):44. https://doi.org/10.1186/1471-2148-10-44 Wenke T, Seibt KM, Döbel T, Muders K, Schmidt T (2015) Inter-SINE amplified polymorphism (ISAP) for rapid and robust plant genotyping. In: Plant Genotyping. Humana Press, New York, pp 183–192 Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430. https://doi.org/10.1007/s00122-010-1398-2 Monden Y, Fujii N, Yamaguchi K, Ikeo K, Nakazawa Y, Waki T, Tahara M (2014) Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site. Genome 57(5):245–252. https://doi.org/10.1139/gen-2014-0031 Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H (2018) Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23(9):833–844. https://doi.org/10.1016/j.tplants.2018.06.004 Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14(1):8. https://doi.org/10.1186/s12915-016-0228-7 Saijo Y, Loo EPI, Yasuda S (2018) Pattern recognition receptors and signaling in plant–microbe interactions. Plant J 93(4):592–613. https://doi.org/10.1111/tpj.13808 Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39(1):79–102. https://doi.org/10.1146/annurev.phyto.39.1.79 Tian YP, Valkonen JP (2012) Mapping of the avirulence determinant of Potato virus Y strain O corresponding to the gene Ny for hypersensitive resistance in potato. Mol Plant-Microbe Interact 26(3):297–305 Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93(7):881–890. https://doi.org/10.1094/PHYTO.2003.93.7.881 Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99(3-4):554–560. https://doi.org/10.1007/s001220051268 Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104(8):1317–1324. https://doi.org/10.1007/s00122-002-0879-3 Chague V, Fahima T, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Roder ME, Nevo E (1999) Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42(6):1050–1056. https://doi.org/10.1139/g99-064 Jeon J-S, Chen D, Yi G-H, Wang GL, Ronald PC (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Gen Genomics 269(2):280–289. https://doi.org/10.1007/s00438-003-0834-2 Sardesai N, Kumar A, Rajyashri KR, Nair S, Mohan M (2002) Identification of an AFLP marker linked to Gm7, a gall midge resistance gene and its conversion to a SCAR marker for its utility in marker aided selection in rice. Theor Appl Genet 105(5):691–698. https://doi.org/10.1007/s00122-002-1035-9 Dussle CM, Quint M, Xu ML, Melchinger AE, Lübberstedt T (2002) Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR based markers. Theor Appl Genet 105(8):1190–1195. https://doi.org/10.1007/s00122-002-0964-7 Graner A, Streng S, Kellermann A, Schiemann A, Baner E, Waugh R, Pellio B, Ordon F (1999) Molecular mapping of the rym5 locus encoding resistance to different strains of the barley yellow mosaic virus complex. Theor Appl Genet 98(2):285–290. https://doi.org/10.1007/s001220051070 Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54(12):1065–1079. https://doi.org/10.1071/AR02219 Graner A, Streng S, Drescher A, Jin Y, Borovkova I, Steffenson B (2000) Molecular mapping of the leaf rust resistance gene Rph7 in barley. Plant Breed 119(5):389–392. https://doi.org/10.1046/j.1439-0523.2000.00528.x Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene targeted and functional markers: a review. Plant Methods 9(1):6. https://doi.org/10.1186/1746-4811-9-6 Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29(4):233–240. https://doi.org/10.1016/j.tig.2012.10.011 Singh RB, Srivastava S, Rastogi J, Gupta GN, Tiwari NN, Singh B, Singh RK (2014) Molecular markers exploited in crop improvement practices. Res Environ Life Sci 7(4):223–232 Gui Y, Yan G, Bo S, Tong Z, Wang Y, Xiao B, Lu X, Li Y, Wu W, Fan L (2011) iSNAP: a small RNA-based molecular marker technique. Plant Breed 130(5):515–520. https://doi.org/10.1111/j.1439-0523.2011.01872.x Zhu Q-H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18(9):1456–1465. https://doi.org/10.1101/gr.075572.107 Varshney RK, Mahendar T, Aggarwal RK, Börner A (2007) Genic molecular markers in plants: development and applications. In: Genomics-assisted crop improvement. Springer, Dordrecht, pp 13–29 Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Cook DR (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30(3):639–651. https://doi.org/10.1016/j.biotechadv.2011.11.001 Schoenfelder S, Fraser P (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20(8):437–455. https://doi.org/10.1038/s41576-019-0128-0 Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117. https://doi.org/10.1093/nar/gkg041 Haberle V, Stark A (2018) Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19(10):621–637. https://doi.org/10.1038/s41580-018-0028-8 Desmarais E, Lanneluc I, Lagnel J (1998) Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species. Nucleic Acids Res 26(6):1458–1465. https://doi.org/10.1093/nar/26.6.1458 Chung YS, Choi SC, Jun TH, Kim C (2017) Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic Environ Biotechnol 58(5):425–431. https://doi.org/10.1007/s13580-017-0297-8 Hu J, Vick BBA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21(3):289–294. https://doi.org/10.1007/BF02772804 Vaseeharan B, Rajakamaran P, Jayaseelan D, Vincent AY (2013) Molecular markers and their application in genetic diversity of penaeid shrimp. Aquac Int 21(2):219–241. https://doi.org/10.1007/s10499-012-9582-9 Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27(1):86–93. https://doi.org/10.1007/s11105-008-0060-5 Gorji AM, Matyas KK, Dublecz Z, Decsi K, Cernak I, Hoffmann B, Taller J, Polgar Z (2012) In vitro osmotic stress tolerance in potato and identification of major QTLs. Am J Potato Res 89(6):453–464. https://doi.org/10.1007/s12230-012-9268-x Gorji AM, Poczai P, Polgar Z, Taller J (2011) Efficiency of Arbitrarily Amplified Dominant Markers (SCOT, ISSR and RAPD) for Diagnostic Fingerprinting in Tetraploid Potato. Am J Potato Res 88(3):226–237. https://doi.org/10.1007/s12230-011-9187-2 Wang Q, Zhang B, Lu Q (2008) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol Biol Report 27:139–143 Koebner RM, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21(2):59–63. https://doi.org/10.1016/S0167-7799(02)00036-7 Dar SH, Hussain W, Sanghera GS (2013) Advances in hybrid rice technology through applications of novel technologies. Crop Improvement: An Integrated Approach. MD Publications Pvt Ltd, New Delhi, pp 61–67 Bidhendi MZ, Choukan R, Darvish F, Mostafavi K, Majidi E (2012) Classifying of maize inbred lines into heterotic groups using diallel analysis. Environments 7:2252–2250 Boeven PH, Longin CFH, Würschum T (2016) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129(6):1231–1245. https://doi.org/10.1007/s00122-016-2699-x Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112(2):208–221. https://doi.org/10.1007/s00122-005-0110-4 Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics 15(1):397 Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123(2):251–260. https://doi.org/10.1007/s00122-011-1581-0 Xu Y, McCouch SR, Zhang Q (2005) How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol 59(1):7–26. https://doi.org/10.1007/s11103-004-4681-2 Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H (2017) Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant Pathol 42(3):165–174. https://doi.org/10.1007/s40858-017-0127-7 Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136(2):303–310. https://doi.org/10.1007/s10709-008-9307-1 Dwivedi N, Kumar R, Paliwal R, Kumar U, Kumar S, Singh M, Singh RK (2015) QTL mapping for important horticultural traits in pepper (Capsicum annuum L.). J Plant Biochem Biotechnol 24(2):154–160. https://doi.org/10.1007/s13562-013-0247-1 Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48(4):1266–1276. https://doi.org/10.2135/cropsci2008.02.0082 Kumar S, Rao M (2014) Conventional and molecular breeding for bacterial leaf blight and blast resistance in rice. Res Rev J Ecol 3:1–3 Jefferies SP, King BJ, Barr AR, Warner P, Logue SJ, Langridge P (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed 122(1):52–56. https://doi.org/10.1046/j.1439-0523.2003.00752.x van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL– NILs for barley leaf rust resistance. Mol Breed 8(3):187–195. https://doi.org/10.1023/A:1013722008561 Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96(1):123–131. https://doi.org/10.1007/s001220050718 Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A (2004) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14(4):463–473. https://doi.org/10.1007/s11032-004-0903-1 Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, Edmeades GO, González-de-León D, Jiang C, Jewell DC, Mihm JA, Williams WP, Hoisington D (2002) Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42(5):1516–1528. https://doi.org/10.2135/cropsci2002.1516 Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162(4):1945–1959. https://doi.org/10.1093/genetics/162.4.1945 Chen S, Lin XH, Xu CG, Zhang QF (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular markerassisted selection. Crop Sci 40(1):239–244. https://doi.org/10.2135/cropsci2000.401239x Chen S, Xu CG, Lin XH, Zhang Q (2001) Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120(2):133–137. https://doi.org/10.1046/j.1439-0523.2001.00559.x Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40(3):792–797. https://doi.org/10.2135/cropsci2000.403792x Liu SX, Anderson JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43(3):760–766. https://doi.org/10.2135/cropsci2003.7600 Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103(1):75–83. https://doi.org/10.1007/s001220100538 Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, Pa-In N, Jantaboon J, Siangliw M, Fukai S (2005) Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod Sci 8(3):330–333. https://doi.org/10.1626/pps.8.330 Zhou RH, Zhu ZD, Kong XY, Huo NX, Tian QZ, Li P, Jin CY, Dong YC, Jia JZ (2005) Development of wheat near-isogenic lines for powdery mildew resistance. Theor Appl Genet 110(4):640–648. https://doi.org/10.1007/s00122-004-1889-0 Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci 47:S-216 Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, Ragot M, Upadhyaya HD, Ortiz R (2007) The molecularization of public sector crop breeding: progress, problems, and prospects. Adv Agron 95:163–318. https://doi.org/10.1016/S0065-2113(07)95003-8 Ji Z, Shi J, Zeng Y, Qian Q, Yang C (2014) Application of a simplified marker-assisted backcross technique for hybrid breeding in rice. Biologia 69(4):463–468. https://doi.org/10.2478/s11756-014-0335-2 Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. IJMS 14(11):22499–22528. https://doi.org/10.3390/ijms141122499 Okada Y, Kanatani R, Arai S, Ito K (2004) Interaction between barley yellow mosaic disease-resistance genes rym1 and rym5, in the response to BaYMV strains. Breed Sci 54(4):319–325. https://doi.org/10.1270/jsbbs.54.319 Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16(1):45–55. https://doi.org/10.1007/s11032-005-3445-2 Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107(5):922–930. https://doi.org/10.1007/s00122-003-1329-6 Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95(3):313–320. https://doi.org/10.1007/s001220050565 Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106(1):1–8. https://doi.org/10.1007/s00122-002-1014-1 Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128. https://doi.org/10.1007/s001220051395 Sharma PN, Torii A, Takumi S, Mori N, Nakamura C (2004) Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Sta°l) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140(1):61–69. https://doi.org/10.1111/j.1601-5223.2004.01726.x Jiang GH, Xu CG, Tu JM, Li XH, He YQ, Zhang QF (2004) Pyramiding of insect- and diseaseresistance genes into an elite indica, cytoplasm male sterile restorer line of rice, ‘Minghui 63’. Plant Breed 123(2):112–116. https://doi.org/10.1046/j.1439-0523.2003.00917.x Liu SP, Li X, Wang CY, Li XH, He YQ (2003) Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. Acta Bot Sin 45:1346–1350 Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560. https://doi.org/10.1016/j.tplants.2003.09.010 Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152(1):109–116. https://doi.org/10.1007/s10681-006-9184-6 Liu Y, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: Current status and future prospects. Theor Appl Genet 125(1):1–10. https://doi.org/10.1007/s00122-012-1829-3 Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (T. aestivum L.). Theor Appl Genet 122(1):211–223. https://doi.org/10.1007/s00122-010-1437-z Andeden E, Yediay F, Baloch F, Shaaf S, Kilian B, Nachit M, Ozkan H (2011) Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun 39(3):352–364. https://doi.org/10.1556/CRC.39.2011.3.5 Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R (2012) Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genom 12(4):573–583. https://doi.org/10.1007/s10142-012-0300-5 Zhao XL, Ma EW, Gale EKR, Lei ZS, He ZH, Sun QX, Xia XC (2007) Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Mol Breed 20(3):223–231. https://doi.org/10.1007/s11032-007-9085-y He X, Zhang Y, He Z, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116(2):213–221. https://doi.org/10.1007/s00122-007-0660-8 Geng H, Xia X, Zhang L, Qu Y, He Z (2012) Development of functional markers for Lipoxygenase gene Talox-B1 on chromosome 4 BS in common wheat. Crop Sci 52(2):568–576. https://doi.org/10.2135/cropsci2011.07.0365 Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114(1):165–175. https://doi.org/10.1007/s00122-006-0420-1 Periyannan S, Bansal U, Bariana H, Deal K, Luo M, Dvorak J, Lagudah E (2014) Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet 127(4):947–955. https://doi.org/10.1007/s00122-014-2270-6 Huseynova IM (2018) Application of PCR-based functional markers for identification of DREB1 genes in Triticum aestivum L. SF Biotechnol Bioeng J 1:1 Wang J, Nakazaki T, Chen S, Chen W, Saito H, Tsukiyama T, Okumoto Y, Xu Z, Tanisaka T (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet 119(1):85–91. https://doi.org/10.1007/s00122-009-1019-0 Xin YY, Hong LY, Fei TJ, Qasim SM, Zhi-Xiong C, Lan W, Jin-Quan L, Xiang-Dong L, Yong-Gen L (2012) Wide-compatibility gene S5n exploited by functional molecular markers and its effect on fertility of intersubspecific rice hybrids. Crop Sci 52(2):669–675. https://doi.org/10.2135/cropsci2011.04.0232 Qi Y, Wang L, Gui J, Zhang L, Liu Q, Wang J (2017) Development and validation of a functional co-dominant SNP marker for the photoperiod thermo-sensitive genic male sterility pms3 (p/tms12-1) gene in rice. Breed Sci 67(5):535–539. https://doi.org/10.1270/jsbbs.16138 Shi W, Yang Y, Chen S, Xu M (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22(2):185–192. https://doi.org/10.1007/s11032-008-9165-7 Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR (2008) Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed 21:49–65 Chen T, Meng-xiang T, Zhang Y, Zhu Z, Zhao L, Zhao Q, Lin J, Zhou L, Wang C (2010) Development of simple functional markers for low glutelin content gene 1 (Lgc1) in rice (Oryza sativa). Rice Sci 17(3):173–178. https://doi.org/10.1016/S1672-6308(09)60014-7 Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508(2):233–240. https://doi.org/10.1016/j.gene.2012.07.054 Zhou L, Chen S, Yang G, Zha W, Cai H, Li S, Chen Z, Liu K, Xu H, You A (2018) A perfect functional marker for the gene of intermediate amylose content Wx-in in rice (Oryza sativa L.). Crop Breed Appl Biotechnol 18(1):103–109. https://doi.org/10.1590/1984-70332018v18n1a14 Hur YJ, Jeung J, Kim SY, Park H, Cho J, Lee JY, Sohan Y, Song YC, Park D, Lee C et al (2013) Functional markers for bacterial blight resistance gene Xa3 in rice. Mol Breed 31(4):981–985. https://doi.org/10.1007/s11032-012-9831-7 Zhou L, Chen Z, Lang X, Du B, Liu K, Yang G, Hu G, Li S, He G, You A (2013) Development and validation of a PCR-based functional marker system for the brown planthopper resistance gene Bph14 in rice. Breed Sci 63(3):347–352. https://doi.org/10.1270/jsbbs.63.347 Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H (2010) Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet 121(7):1357–1367. https://doi.org/10.1007/s00122-010-1393-7 Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM et al (2007) A marker-assisted backcross approach for developing submergence tolerant rice cultivars. Theor Appl Genet 115(6):767–776. https://doi.org/10.1007/s00122-007-0607-0 Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156(3):1202–1216. https://doi.org/10.1104/pp.111.175471 Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 Confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993. https://doi.org/10.3389/fpls.2017.00993 Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346. https://doi.org/10.1093/genetics/141.1.333 Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28(3):286–289. https://doi.org/10.1038/90135 Chai Y, Hao X, Yang X, Allen WB, Li J, Yan J, Shen B, Li J (2012) Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breed 29(4):939–949. https://doi.org/10.1007/s11032-011-9644-0 Lubberstedt T, Zein I, Andersen J, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146(1-2):101–108. https://doi.org/10.1007/s10681-005-0892-0 Zhou Y, Han Y, Li Z, Fu Y, Fu Z, Xu S, Li J, Yan J, Jang X (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of a-carotene in maize kernel. J Integr Plant Biol 54(4):260–269. https://doi.org/10.1111/j.1744-7909.2012.01106.x Chhabra R, Hossain F, Muthusamy V, Baveja A, Mehta BK, Zunjare RU (2019) Development and validation of breeder-friendly functional markers of sugary1 gene encoding starch-debranching enzyme affecting kernel sweetness in maize (Zea mays). Crop Pasture Sci 70(10):868–875. https://doi.org/10.1071/CP19298 Assenov B, Andjelkovic V, Ignjatovic-Micic D, Pagnotta MA (2013) Identification of SNP mutations in MYBF-1 gene involved in drought stress tolerance in maize. Bulg J Agric Sci 19:181–185 Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA (2002) Comparative mapping of the barley Phd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161(2):825–834. https://doi.org/10.1093/genetics/161.2.825 Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273(1):54–65. https://doi.org/10.1007/s00438-004-1095-4 Madsen LH, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman EH, Jahoor A, Ayliffe M (2003) Barley disease resistance gene analogs of the NBSLRR class: Identification and mapping. Mol Genet Genomics 269(1):150–161. https://doi.org/10.1007/s00438-003-0823-5 Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low copy DNA interrupts the micro-collinearity between rice and barley at the Rph7 locus. Genetics 164(2):673–683. https://doi.org/10.1093/genetics/164.2.673 McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442. https://doi.org/10.1104/pp.123.2.439 Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING – a shortcut in functional genomics. J Appl Genet 52(4):371–390. https://doi.org/10.1007/s13353-011-0061-1 Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45(4):684–694. https://doi.org/10.1111/j.1365-313X.2006.02670.x Gupta PK, Sonwane AA, Singh NK, Meshram CD, Dahiya SS, Pawar SS, Gupta SP, Chaturvedi VK, Saini M (2012) Intracerebral delivery of small interfering RNAs (siRNAs) using adenoviral vector protects mice against lethal peripheral rabies challenge. Virus Res 163(1):11–18. https://doi.org/10.1016/j.virusres.2011.08.004 Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22(21):5690–5699. https://doi.org/10.1093/emboj/cdg546 Guo L, Lu Z (2010) Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem 34(3):165–171. https://doi.org/10.1016/j.compbiolchem.2010.06.001 Lee SC, Choi DS, Hwang IS, Hwang BK (2010) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73(4-5):409–424. https://doi.org/10.1007/s11103-010-9629-0 Choi HW, Hwang BK (2012) The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta 235(6):1369–1382. https://doi.org/10.1007/s00425-011-1580-z Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647 Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19(5):284–287. https://doi.org/10.1016/j.tplants.2014.02.014 Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022 Niewoehner O, Jinek M, Doudna JA (2013) Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res 42(2):1341–1353. https://doi.org/10.1093/nar/gkt922 Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR– Cas systems. Nat Rev Microbiol 9(6):467–477. https://doi.org/10.1038/nrmicro2577 Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650 Ali Z, Eid A, Ali S, Mahfouz MM (2018) Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res 244:333–337. https://doi.org/10.1016/j.virusres.2017.10.009 Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. https://doi.org/10.1104/pp.15.00793 Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, highefficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. https://doi.org/10.1016/j.molp.2015.04.007 Zargar SM, Raatz B, Sonah H, Bhat JA, Dar ZA, Agrawal GK, Rakwal R (2015) Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. J Crop Sci Biotechnol 18(5):293–308. https://doi.org/10.1007/s12892-015-0037-5 Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631. https://doi.org/10.1038/nature08800 Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967. https://doi.org/10.1038/ng.695 Chia JM, Song C, Bradbury PJ, Costich D, De Leon N, Doebley J, Hufford MB, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807. https://doi.org/10.1038/ng.2313 Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45(8):957–961. https://doi.org/10.1038/ng.2673 Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162. https://doi.org/10.1038/ng.746 Zhao J, Perez M, Hu J, Salas FMG (2016) Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome 9(2):1–14 Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39. https://doi.org/10.1038/ng.1018 Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718. https://doi.org/10.1126/science.1174276 Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168. https://doi.org/10.1038/ng.747 Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME (2018) Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet 131(7):1405–1422. https://doi.org/10.1007/s00122-018-3086-6 Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Yan J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50. https://doi.org/10.1038/ng.2484 Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505. https://doi.org/10.1111/tpj.12294 Turner EH, Ng SB, Nickerson DA, Shendure J (2009) Methods for genomic partitioning. Annu Rev Genomics Hum Genet 10(1):263–284. https://doi.org/10.1146/annurev-genom-082908-150112 Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7(12):1009–1015. https://doi.org/10.1038/nmeth.1528 Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756. https://doi.org/10.1093/genetics/124.3.743 Yin X, Stam P, Kropff MJ, Schapendonk AHCM (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95(1):90–98. https://doi.org/10.2134/agronj2003.0090 Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Thero Appl Genet 92(2):191–203. https://doi.org/10.1007/BF00223376 Verbyla AP, Eckermann PJ, Thompson R, Cullis BR (2003) The analysis of quantitative trait loci in multi-environment trials using a multiplicative mixed model. Aust J Agric Res 54(12):1395–1408. https://doi.org/10.1071/AR02239 Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432. https://doi.org/10.1007/s00122-003-1373-2 Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133(3):1083–1090. https://doi.org/10.1104/pp.103.027607 Stuber CW, Polacco M, Lynn M (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583. https://doi.org/10.2135/cropsci1999.3961571x Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter)בTremois’(spring) barley map. Theor Appl Genet 108(4):670–680. https://doi.org/10.1007/s00122-003-1468-9 Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106. https://doi.org/10.1126/science.280.5360.104 Tóth B, Francia E, Rizza F, Stanca AM, Galiba G, Pecchioni N (2004) Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Mol Breed 14(3):265–273. https://doi.org/10.1023/B:MOLB.0000047774.01769.e6 Abe A, Takagi H, Fujibe T, Aya K, Kojima M, Sakakibara H, Terauchi R (2012) OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theor Appl Genet 125(4):647–657. https://doi.org/10.1007/s00122-012-1857-z Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A (2004) Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet 109(3):515–522. https://doi.org/10.1007/s00122-004-1667-z Riede CR, Francl LJ, Anderson JA, Jordahl JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36(3):771–777. https://doi.org/10.2135/cropsci1996.0011183X003600030040x Miftahudin CT, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110(5):906–913. https://doi.org/10.1007/s00122-004-1909-0 Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Gen Genomics 266(5):821–826. https://doi.org/10.1007/s00438-001-0599-4 Zhou P, Tan Y, He Y, Xu C, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106(2):326–331. https://doi.org/10.1007/s00122-002-1023-0 Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134(1):51–60. https://doi.org/10.1023/A:1026191918704 Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol Breed 12(1):51–59. https://doi.org/10.1023/A:1025484523771 Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485. https://doi.org/10.1007/s11103-005-0257-z Yang SY, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harper JD, Upadhyaya HD, Gothalwal R, Kilian A, Varshney RK (2011) The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 90(1):103–109. https://doi.org/10.1007/s12041-011-0050-5 McKay JR, Latta RG (2002) Adaptive divergence population: markers, QTLs and traits. Trends Ecol Evol 17(6):285–291. https://doi.org/10.1016/S0169-5347(02)02478-3 Bernatsky R, Tanksley S (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genet 112(4):887–898. https://doi.org/10.1093/genetics/112.4.887 Frisch M, Bohn M, Melchinger TE (1999) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39(4):967–975. https://doi.org/10.2135/cropsci1999.0011183X003900040003x Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829. https://doi.org/10.1093/genetics/157.4.1819 Frisch M, Melchinger AE (2005) Selection theory for marker-assisted backcrossing. Genetics 170(2):909–917. https://doi.org/10.1534/genetics.104.035451 Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122(8):1577–1589. https://doi.org/10.1007/s00122-011-1556-1