Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study

Michele Ballerini1,2, N. Cabibbo3,4, Raphaël Candelier3, Andrea Cavagna1,5, E. Cisbani2, Irene Giardina1,5, Vivien Lecomte6, Alberto Orlandi1, Giorgio Parisi1,3,4, Andrea Procaccini1,3, Massimiliano Viale3, Vladimir Zdravkovic1
1*Centre for Statistical Mechanics and Complexity (SMC), Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia,
2Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Roma, Italy
3Dipartimento di Fisica, and
4Sezione Instituto Nazionale di Fisica Nucleare, Universita' di Roma “La Sapienza,” Piazzale Aldo Moro 2, 00185 Roma, Italy;
5Istituto dei Sistemi Complessi (ISC), Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Roma, Italy; and
6Laboratoire Matière et Systèmes Complexes, (Centre National de la Recherche Scientifique Unite Mixte de Recherche 7057), Université Paris VII, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

Tóm tắt

Numerical models indicate that collective animal behavior may emerge from simple local rules of interaction among the individuals. However, very little is known about the nature of such interaction, so that models and theories mostly rely on aprioristic assumptions. By reconstructing the three-dimensional positions of individual birds in airborne flocks of a few thousand members, we show that the interaction does not depend on the metric distance, as most current models and theories assume, but rather on the topological distance. In fact, we discovered that each bird interacts on average with a fixed number of neighbors (six to seven), rather than with all neighbors within a fixed metric distance. We argue that a topological interaction is indispensable to maintain a flock's cohesion against the large density changes caused by external perturbations, typically predation. We support this hypothesis by numerical simulations, showing that a topological interaction grants significantly higher cohesion of the aggregation compared with a standard metric one.

Từ khóa


Tài liệu tham khảo

10.1126/science.284.5411.99

J Krause, GD Ruxton Living in Groups (Oxford Univ Press, Oxford, 2002).

10.2307/4081266

TJ Pitcher JK Parrish Behaviour of Teleost Fishes. ed TJ Pitcher (Chapman and Hall London 1993).

10.1006/jtbi.1996.0144

10.1109/TAC.2003.812781

10.1017/S1365100500015029

10.1038/35035023

10.2331/suisan.48.1081

10.1145/37402.37406

FH Heppner, U Grenander The Ubiquity of Chaos, ed S Krasner (Am Assoc Adv Sci, Washington, DC, 1990).

10.1016/S0022-5193(05)80681-2

10.1006/jtbi.2002.3065

10.1006/jtbi.2001.2449

10.1162/106454603322392451

10.1103/PhysRevLett.75.1226

10.1103/PhysRevLett.82.209

10.1016/S0167-2789(03)00102-7

10.1103/PhysRevLett.92.025702

10.1126/science.1125142

10.1016/0042-6989(90)90082-V

10.1016/0003-3472(65)90117-X

10.1007/BF00292770

10.1007/BF00354974

10.2307/4088194

I Aoki, An analysis of the schooling behavior of fish: Internalorganization and communication process. Bull Ocean Res Inst Univ Tokyo 12, 1–65 (1980).

10.2307/1543482

10.1126/science.168.3934.1003

10.1038/nrn1626

JD Emmerton, J Delius, Beyond sensation: Visual cognition in pigeons. Vision, Brain and Behaviour, eds HP, Zeigler, HJ. Bischof (MIT Press, Cambridge, MA, 1993).

10.1098/rstb.1995.0172

10.1016/S0065-3454(03)01001-5

10.1038/293133a0

10.1016/S0262-8856(02)00154-3

D Forsyth, J Ponce Computer Vision: A Modern Approach (Prentice Hall, Upper Saddle River, NJ, 2002).

10.1023/A:1007936012022

10.1145/321941.321942

H Edelsbrunner, EP Mucke, Three-dimensional alpha shapes. Assoc Comput Mach Trans Graphics 13, 43–72 (1994).

D Stoyan, H Stoyan Fractals, Random Shapes and Point Fields (Wiley, Chichester, UK, 1994).