Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles

Pleiades Publishing Ltd - Tập 91 - Trang 1781-1790 - 2017
Abebe Belay1, Hyung Kook Kim2, Yoon-Hwae Hwang2
1School of Applied Natural Sciences, Applied Physics Program, Adama Science and Technology University, Adama, Ethiopia
2Department of Nanomaterial Engineering and BK 21 Plus Nanoconvergence Technology Division, Pusan National University, Miryang, South Korea

Tóm tắt

Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV–Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA–ZnO. From fluorescence quenching spectral analysis the binding constant (K a ), number of binding sites (n), and thermodynamic properties, were determined. The quenching constants (K sv) and binding constant (K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van’t Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA–ZnO due to adsorption of CGA on the surface of ZnO NPs

Tài liệu tham khảo

L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, Chem. Mater. 13, 4395 (2001). R. Könenkamp, L. Dloczik, K. Ernst, and C. Olesch, Phys. E: Low-Dim. Syst. Nanostruct. 14, 219 (2002). W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 16, 1009 (2004). S. J. Yang and C. R. Park, Nanotechnology 19, 035609 (2008). E. R. Waclawik, J. Chang, A. Ponzoni, et al., Beilstein J. Nanotechnol. 3, 368 (2012). Z. Deng, M. Chen, A. Gu, and L. Wu, J. Phys. Chem. B 112, 16 (2008). J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, Expert Opin. Drug Deliv. 7, 1063 (2010). T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, Mol. Pharm. 2, 194 (2005). K. Cho, X. Wang, S. Nie, Z. Chen, and D. M. Shin, Clin. Cancer Res. 14, 1310 (2008). M. Ohgaki, T. Kizuki, M. Katsura, and K. Yamashita, J. Biomed. Mater. Res. 57, 366 (2001). X. Wei, W. Wang, and K. Chen, J. Phys. Chem. C 117, 23716 (2013). L. C. Trugo and R. Macrae, Food Chem. 15, 219 (1984). H. Sakakibara, Y. Honda, S. Nakagawa, H. Ashida, and K. Kanazawa, J. Agric. Food Chem. 51, 571 (2003). Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, and K. Iseli, Int. J. Pharm. 403, 136 (2011). A. A. Almeida, A. Farah, D. A. M. Silva, E. A. Nunam, and M. B. A. Gloria, J. Agric. Food Chem. 54, 8738 (2006). U.-H. Jin, J.-Y. Lee, S.-K. Kang, J.-K. Kim, W.-H. Park, J.-G. Kim, S.-K. Moon, and C.-H. Kim, Life Sci. 77, 2760 (2005). G. F. Wang, L. P. Shi, Y. D. Ren, Q. F. Liu, H. F. Liu, R. J. Zhang, Z. Li, F. H. Zhu, P. L. He, W. Tang, P. Z. Tao, C. Li, W. M. Zhao, and J. P. Zuo, Antiviral Res. 83, 186 (2009). C.-W. Wan, C. N.-Y. Wong, W.-K. Pin, M. H.-Y. Wong, C.-Y. Kwok, R. Y.-K. Chan, P. H.-F. Yu, and S.-W. Chan, Phytother. Res. 27, 545 (2013). M. D. Santos, M. C. Almeida, N. P. Lopes, and G. E. P. Souza, Biol. Pharm. Bull. 29, 2236 (2006). R. A. Sperling and W. J. Parak, Phil. Trans. R. Soc. A 368, 1333 (2010). J. Zhou, N. S. Xu, and Z. L. Wang, Adv. Mater. 18, 2432 (2006). S. T. Teklemichael and M. D. McCluskey, J. Phys. Chem. C 116, 17248 (2012). M. Buchholz, Q. Li, H. Noei, A. Nefedov, Y. Wang, M. Muhler, K. Fink, and C. Wöll, Top. Catal. 58, 174 (2015). S. Dutta and B. Nly, J. Nanobiotechnol. 10, 29 (2012). G. Mandal, S. Bhattacharya, and T. Ganguly, Chem. Phys. Lett. 472, 128 (2009). A. Bhogale, N. Patel, P. Sarpotdar, J. Mariam, P. M. Dongre, A. Miotello, et al., Colloid Surf. B 102, 257 (2013). A. Belay, H. K. Kim, and Y.-H. Hwang, J. Lumin. (in press). doi 10.1002/bio.3007 J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999). E. J. Bowen, Fluorescence of Solutions (Longmans, New York, 1953). C. A. Parker, Photoluminescence of Solutions (Elsevier, New York, 1968). F. Morales, A. Cartelat, A. Alvarez-Fernandez, I. Moya, and Z. G. Cerovic, J. Agric. Food Chem. 53, 9668 (2005). K.-C. Chou and S. P. Jiang, Sci. Sinica 27, 664 (1974). A. Rajeshwari, S. Pakrashi, S. Dalai, S. Madhumita, V. Iswarya, N. Chandrasekaran, et al., J. Lumin. 145, 859 (2014). A. S. Al-Kady, M. Gaber, M. M. Hussein, and E. Z. M. Ebeid, Spectrochim. Acta A 83, 398 (2011). J. L. Kang, Y. Liu, M. X. Xie, S. Li, M. Jiang, and Y. D. Wang, Biochim. Biophys. Acta 1674, 205 (2004). P. D. Ross and S. Subramanian, Biochemistry 20, 3096 (1981). X. Wang, X. Yu, X. Xue, J. Yu, and X. Zhao, Appl. Phys. Lett. 91, 031908 (2007). S. Singh and M. S. R. Rao, Phys. Rev. B 80, 045210 (2009). J. Serrano, A. H. Romero, F. J. Manjo’n, R. Lauck, M. Cardona, and A. Rubio, Phys. Rev. B 69, 094306 (2004). T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966). N. Biswas, S. Kapoor, H. S. Mahal, and T. Mukherjee, Chem. Phys. Lett. 444, 338 (2007). P. J. Eravuchira, R. M. El-Abassy, S. Deshpande, M. F. Matei, S. Mishra, P. Tandon, N. Kuhnert, and A. Materny, Vibrat. Spectrosc. 61, 10 (2012).