Expression of basal lamina components by Schwann cells cultured on poly(lactic acid) (PLLA) and poly(caprolactone) (PCL) membranes

Springer Science and Business Media LLC - Tập 20 - Trang 489-495 - 2008
A. Pierucci1, E. A. R. Duek2, A. L. R. de Oliveira1
1Department of Anatomy, Laboratory of Nerve Regeneration, Institute of Biology, University of Campinas––UNICAMP, Campinas, Brazil
2Department of Materials Engineering, Faculty of Mechanical Engineering, University of Campinas––UNICAMP, Campinas, Brazil

Tóm tắt

The present in vitro study investigated the expression of basal lamina components by Schwann cells (SCs) cultivated on PCL and PLLA membranes prepared by solvent evaporation. Cultures of SCs were obtained from sciatic nerves from neonatal Sprague Dawley rats and seeded on 24 well culture plates containing the polymer membranes. The purity of the cultures was evaluated with a Schwann cell marker antibody (anti-S-100). After one week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, laminin I and II. Positive labeling against the studied molecules was observed, indicating that such biomaterials positively stimulate Schwann cell adhesion and proliferation. Overall, the present results provide evidence that membrane-derived biodegradable polymers, particularly those derived from PLLA, are able to provide adequate substrate and stimulate SCs to produce ECM molecules, what may have in turn positive effects in vivo, influencing the peripheral nerve regeneration process.

Tài liệu tham khảo

D.M. Barnes, What makes nerves regenerate? Many experimental strategies revolve around a central issue: what conditions promote regeneration and functional recovery in mammalian nerves? Science 230(4729), 1024–1025 (1985). doi:10.1126/science.4059920 C. Ide, Peripheral nerve regeneration. Neurosci. Res. 25(2), 101–121 (1996) E.R. Lunn, M.C. Brown, V.H. Perry, The pattern of axonal degeneration in the peripheral nervous system varies with different types of lesion. Neuroscience 35(1), 157–165 (1990). doi:10.1016/0306-4522(90)90130-V D.W. Zochodne, The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve 9, S33–S38 (2000). doi:10.1002/1097-4598(2000)999:9<::AID-MUS7>3.0.CO;2-F G. Stoll, S. Jander, R.R. Myers, Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J. Peripher. Nerv. Syst. 7(1), 13–27 (2002). doi:10.1046/j.1529-8027.2002.02002.x C.E. Schmidt, J.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003). doi:10.1146/annurev.bioeng.5.011303.120731 K.R. Jessen, R. Mirsky, Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci. 22(9), 402–410 (1999). doi:10.1016/S0166-2236(98)01391-5 C. Ide, K. Tohyama, R. Yokota, T. Nitatori, S. Onodera, Schwann cell basal lamina and nerve regeneration. Brain Res. 288(1–2), 61–75 (1983). doi:10.1016/0006-8993(83)90081-1 R.D. Madison, C.F. Da Silva, P. Dikkes, Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses. Brain Res. 447(2), 325–334 (1988). doi:10.1016/0006-8993(88)91135-3 S. Sunderland, The anatomy and physiology of nerve injury. Muscle Nerve 13(9), 771–784 (1990). doi:10.1002/mus.880130903 G. Lundborg, Peripheral nerve injuries: pathophysiology and strategies for treatment. J. Hand. Ther. 6(3), 179–188 (1993) G. Terenghi, Peripheral nerve regeneration and neurotrophic factors. J. Anat. 194, 1–14 (1999). doi:10.1046/j.1469-7580.1999.19410001.x K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431 (2006). doi:10.1016/j.biomaterials.2006.01.039 G.R. Evans, K. Brandt, S. Katz, P. Chauvin, L. Otto, M. Bogle, B. Wang, R.K. Meszlenyi, L. Lu, A.G. Mikos, C.W. Patrick Jr, Bioactive poly (l-lactic acid) conduits seed with Schwann cells for peripheral nerve regeneration. Biomaterials 23(3), 841–848 (2002). doi:10.1016/S0142-9612(01)00190-9 B. Schlosshauer, E. Muller, B. Schroder, H. Planck, H.W. Muller, Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain Res. 963(1–2), 321–326 (2003). doi:10.1016/S0006-8993(02)03930-6 N.N. Aldini, G. Perego, G.D. Cella, M.C. Maltarello, M. Fini, M. Rocca, R. Giardino, Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials 17(10), 959–962 (1996). doi:10.1016/0142-9612(96)84669-2 J.P. Brockes, K.L. Fields, M.C. Raff, Studies on culture rat Schwann cell. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165(1), 105–128 (1979). doi:10.1016/0006-8993(79)90048-9 J.G. Assouline, E.P. Bosch, R. Lim, Purification of rat Schwann cells from cultures of peripheral nerve: an immunoselective method using surfaces coated with anti-immunoglobulin antibodies. Brain Res. 277(2), 389–392 (1983). doi:10.1016/0006-8993(83)90953-8 J.D. Guest, A. Rao, L. Olson, M.B. Bunge, R.P. Bunge, The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 148(2), 502–522 (1997). doi:10.1006/exnr.1997.6693 C.V. Borlongan, S.J. Skinner, M. Geaney, A.V. Vasconcellos, R.B. Elliott, D.F. Emerich, Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35(9), 2206–2210 (2004). doi:10.1161/01.STR.0000138954.25825.0b A. Wennersten, S. Holmin, F. Al Nimer, X. Meijer, L.U. Wahlberg, T. Mathiesen, Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp. Neurol. 199(2), 339–347 (2006). doi:10.1016/j.expneurol.2005.12.035 S. Bunting, L. Di Silvio, S. Deb, S. Hall, Bioresorbable glass fibres facilitate peripheral nerve regeneration. J. Hand. Surg. [Br] 30(3), 242–247 (2005). doi:10.1016/j.jhsb.2004.11.003 Y. Sakai, Y. Matsuyama, K. Takahashi, T. Sato, T. Hattori, S. Nakashima, N. Ishiguro, New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration. Biomed. Mater. Eng. 17(3), 191–197 (2007) P. Sangsanoh, S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, P. Supaphol, In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules 8(5), 1587–1594 (2007). doi:10.1021/bm061152a P.C. Letourneau, Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44(1), 92–101 (1975). doi:10.1016/0012-1606(75)90379-6 M. Lietz, L. Dreesmann, M. Hoss, S. Oberhoffner, B. Schlosshauer, Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials 27(8), 1425–1436 (2006). doi:10.1016/j.biomaterials.2005.08.007 A. Hurtado, L.D. Moon, V. Maquet, B. Blits, R. Jérôme, M. Oudega, Poly (d, l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27(3), 430–442 (2006). doi:10.1016/j.biomaterials.2005.07.014 C. Miller, H. Shanks, A. Witt, G. Rutkowski, S. Mallapragada, Oriented Schwann cell growth on micropatterned biodegradable polymer substrate. Biomaterials 22(11), 1263–1269 (2001). doi:10.1016/S0142-9612(00)00278-7