Gadolinium oxyorthogermanate Gd2GeO5: An efficient solid refrigerant material for magnetic cryocoolers

Materials Today Physics - Tập 27 - Trang 100810 - 2022
Ziyu W. Yang1, Shijun Qin2,3, Jie Zhang2,3, Dabiao Lu2,3, Haoting Zhao2,3, Chenxu Kang1, Hongzhi Cui1, Youwen Long2,3,4, Yu-Jia Zeng1
1College of Civil and Transportation Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China

Tài liệu tham khảo

Barclay, 1982, Materials for magnetic refrigeration between 2 K and 20 K, Cryogenics, 22, 73, 10.1016/0011-2275(82)90098-4 Lyubina, 2017, Magnetocaloric materials for energy efficient cooling, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/50/5/053002 Balli, 2017, Advanced materials for magnetic cooling: fundamentals and practical aspects, Appl. Phys. Rev., 4, 10.1063/1.4983612 Franco, 2018, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005 Wikus, 2014, Magnetocaloric materials and the optimization of cooling power density, Cryogenics, 62, 150, 10.1016/j.cryogenics.2014.04.005 Wikus, 2011, Optimum operating regimes of common paramagnetic refrigerants, Cryogenics, 51, 555, 10.1016/j.cryogenics.2011.07.001 Gifford, 1970, Refrigeration to below 20 K, Cryogenics, 10, 23, 10.1016/S0011-2275(70)80005-4 Barclay, 1988, Magnetic refrigeration: a review of a developing technology, Adv. Cryog. Eng., 33, 719 Alahmer, 2021, Magnetic refrigeration Design technologies: state of the art and general perspectives, Energies, 14, 4662, 10.3390/en14154662 Xu, 2021, Excellent cryogenic magnetocaloric performances in ferromagnetic Sr2GdNbO6 double perovskite compound, Mater. Today Phys., 20 Feng, 2021, Giant refrigerant capacity in Gd-based amorphous/nanocrsytalline composite fibers, Mater. Today Phys., 21 Wellm, 2020, Magnetic interactions in the tripod kagome antiferromagnet Mg2Gd3Sb3O14 probed by static magnetometry and high-field ESR spectroscopy, Phys. Rev. B, 102, 10.1103/PhysRevB.102.214414 Coey, 2010 Mukherjee, 2017, Sensitivity of magnetic properties to chemical pressure in lanthanide garnets Ln3A2X3O12, Ln = Gd, Tb, Dy, Ho, A = Ga, Sc, In, Te, X = Ga, Al, Li, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa810e Sackville Hamilton, 2014, Enhancement of the magnetocaloric effect driven by changes in the crystal structure of Al-doped GGG, Gd3Ga5-xAlxO12 (0<=x<=5), J. Phys. Condens. Matter, 26, 10.1088/0953-8984/26/11/116001 Chogondahalli Muniraju, 2020, Magnetocaloric effect in a frustrated Gd-garnet with No long-range magnetic order, Inorg. Chem., 59, 15144, 10.1021/acs.inorgchem.0c02074 Lorusso, 2013, A dense metal-organic framework for enhanced magnetic refrigeration, Adv. Mater., 25, 4653, 10.1002/adma.201301997 Yang, 2020, Large magnetocaloric effect in gadolinium borotungstate Gd3BWO9, J. Mater. Chem. C, 8, 11866, 10.1039/D0TC02449J Toby, 2001, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 34, 210, 10.1107/S0021889801002242 Rietveld, 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558 Cremades, 2012, Theoretical study of exchange coupling in 3d-Gd complexes: large magnetocaloric effect systems, J. Am. Chem. Soc., 134, 10532, 10.1021/ja302851n Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Dudarev, 1998, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B, 57, 1505, 10.1103/PhysRevB.57.1505 Brixner, 1985, Structure and luminescence of Gd2GeO5 and Dy2GeO5, J. Less Common. Met., 110, 397, 10.1016/0022-5088(85)90349-2 Yang, 2020, Anisotropic fluoride nanocrystals modulated by facet-specific passivation and their disordered surfaces, Natl. Sci. Rev., 7, 841, 10.1093/nsr/nwaa042 Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8 Bustingorry, 2016, Second-order magnetic critical points at finite magnetic fields: revisiting Arrott plots, Phys. Rev. B, 93, 10.1103/PhysRevB.93.224429 Koskelo, 2022, Free-spin dominated magnetocaloric effect in dense Gd3+ double perovskites, Chem. Mater., 34, 3440, 10.1021/acs.chemmater.2c00261 Tahiri, 2021, Magnetocaloric and thermoelectric properties of the perovskite LaMnO3 material: a DFT study and Monte Carlo technique, Phase Transitions, 94, 826, 10.1080/01411594.2021.1974860 Charif Alaoui, 2022, Magnetic properties and large magnetocaloric effect in the perovskite Mn3GeC compound: ab initio and Monte Carlo calculations, Phase Transitions, 95, 10, 10.1080/01411594.2021.1999950 Bazine, 2022, Magnetic, magnetocaloric and thermoelectric properties of the intermetallic LaMn2Si2 compound: a theoretical study, Phase Transitions, 95, 387, 10.1080/01411594.2022.2054808 Tahiri, 2021, Magnetic, magnetocaloric and thermoelectric investigations of perovskite LaFeO3 compound: first principles and Monte Carlo calculations, Comput. Theor. Chem., 1204, 10.1016/j.comptc.2021.113421 Ben Hamed, 2019, First-principles investigations of the magnetic phase diagram of Gd1-xCaxMnO3, Phys. Rev. B, 99, 10.1103/PhysRevB.99.144428 Yang, 2022, Large magnetic entropy change in weberite-type oxides Gd3MO7 (M = Nb, Sb, and Ta), Sci. China Phys. Mech. Astron., 65, 10.1007/s11433-021-1834-4 Palacios, 2018, Magnetic structures and magnetocaloric effect in RVO4(R=Gd, Nd), Phys. Rev. B, 97, 10.1103/PhysRevB.97.214401 Palacios, 2014, Magnetic structure and magnetocalorics of GdPO4, Phys. Rev. B, 90, 10.1103/PhysRevB.90.214423 Pratt, 1977, A continuous demagnetization refrigerator operating near 2 K and a study of magnetic refrigerants, Cryogenics, 17, 689, 10.1016/0011-2275(77)90225-9 Zeleňáková, 2016, Large magnetocaloric effect in fine Gd2O3 nanoparticles embedded in porous silica matrix, Appl. Phys. Lett., 109, 10.1063/1.4963267 Yang, 2021, Cryogenic magnetocaloric effect in distorted double-perovskite Gd2ZnTiO6, J. Mater. Chem. C, 9, 6754, 10.1039/D1TC01789F Kleinhans, 2022 Stanley, 1999, Scaling, universality, and renormalization: three pillars of modern critical phenomena, Rev. Mod. Phys., 71, S358, 10.1103/RevModPhys.71.S358 Franco, 2008, A universal curve for the magnetocaloric effect: an analysis based on scaling relations, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/28/285207 Franco, 2010, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int. J. Refrig., 33, 465, 10.1016/j.ijrefrig.2009.12.019 Shen, 2002, Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy, J. Appl. Phys., 91, 5240, 10.1063/1.1456957 Law, 2018, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect, Nat. Commun., 9, 2680, 10.1038/s41467-018-05111-w