Gadolinium oxyorthogermanate Gd2GeO5: An efficient solid refrigerant material for magnetic cryocoolers
Tài liệu tham khảo
Barclay, 1982, Materials for magnetic refrigeration between 2 K and 20 K, Cryogenics, 22, 73, 10.1016/0011-2275(82)90098-4
Lyubina, 2017, Magnetocaloric materials for energy efficient cooling, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/50/5/053002
Balli, 2017, Advanced materials for magnetic cooling: fundamentals and practical aspects, Appl. Phys. Rev., 4, 10.1063/1.4983612
Franco, 2018, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005
Wikus, 2014, Magnetocaloric materials and the optimization of cooling power density, Cryogenics, 62, 150, 10.1016/j.cryogenics.2014.04.005
Wikus, 2011, Optimum operating regimes of common paramagnetic refrigerants, Cryogenics, 51, 555, 10.1016/j.cryogenics.2011.07.001
Gifford, 1970, Refrigeration to below 20 K, Cryogenics, 10, 23, 10.1016/S0011-2275(70)80005-4
Barclay, 1988, Magnetic refrigeration: a review of a developing technology, Adv. Cryog. Eng., 33, 719
Alahmer, 2021, Magnetic refrigeration Design technologies: state of the art and general perspectives, Energies, 14, 4662, 10.3390/en14154662
Xu, 2021, Excellent cryogenic magnetocaloric performances in ferromagnetic Sr2GdNbO6 double perovskite compound, Mater. Today Phys., 20
Feng, 2021, Giant refrigerant capacity in Gd-based amorphous/nanocrsytalline composite fibers, Mater. Today Phys., 21
Wellm, 2020, Magnetic interactions in the tripod kagome antiferromagnet Mg2Gd3Sb3O14 probed by static magnetometry and high-field ESR spectroscopy, Phys. Rev. B, 102, 10.1103/PhysRevB.102.214414
Coey, 2010
Mukherjee, 2017, Sensitivity of magnetic properties to chemical pressure in lanthanide garnets Ln3A2X3O12, Ln = Gd, Tb, Dy, Ho, A = Ga, Sc, In, Te, X = Ga, Al, Li, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa810e
Sackville Hamilton, 2014, Enhancement of the magnetocaloric effect driven by changes in the crystal structure of Al-doped GGG, Gd3Ga5-xAlxO12 (0<=x<=5), J. Phys. Condens. Matter, 26, 10.1088/0953-8984/26/11/116001
Chogondahalli Muniraju, 2020, Magnetocaloric effect in a frustrated Gd-garnet with No long-range magnetic order, Inorg. Chem., 59, 15144, 10.1021/acs.inorgchem.0c02074
Lorusso, 2013, A dense metal-organic framework for enhanced magnetic refrigeration, Adv. Mater., 25, 4653, 10.1002/adma.201301997
Yang, 2020, Large magnetocaloric effect in gadolinium borotungstate Gd3BWO9, J. Mater. Chem. C, 8, 11866, 10.1039/D0TC02449J
Toby, 2001, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 34, 210, 10.1107/S0021889801002242
Rietveld, 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558
Cremades, 2012, Theoretical study of exchange coupling in 3d-Gd complexes: large magnetocaloric effect systems, J. Am. Chem. Soc., 134, 10532, 10.1021/ja302851n
Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Dudarev, 1998, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B, 57, 1505, 10.1103/PhysRevB.57.1505
Brixner, 1985, Structure and luminescence of Gd2GeO5 and Dy2GeO5, J. Less Common. Met., 110, 397, 10.1016/0022-5088(85)90349-2
Yang, 2020, Anisotropic fluoride nanocrystals modulated by facet-specific passivation and their disordered surfaces, Natl. Sci. Rev., 7, 841, 10.1093/nsr/nwaa042
Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8
Bustingorry, 2016, Second-order magnetic critical points at finite magnetic fields: revisiting Arrott plots, Phys. Rev. B, 93, 10.1103/PhysRevB.93.224429
Koskelo, 2022, Free-spin dominated magnetocaloric effect in dense Gd3+ double perovskites, Chem. Mater., 34, 3440, 10.1021/acs.chemmater.2c00261
Tahiri, 2021, Magnetocaloric and thermoelectric properties of the perovskite LaMnO3 material: a DFT study and Monte Carlo technique, Phase Transitions, 94, 826, 10.1080/01411594.2021.1974860
Charif Alaoui, 2022, Magnetic properties and large magnetocaloric effect in the perovskite Mn3GeC compound: ab initio and Monte Carlo calculations, Phase Transitions, 95, 10, 10.1080/01411594.2021.1999950
Bazine, 2022, Magnetic, magnetocaloric and thermoelectric properties of the intermetallic LaMn2Si2 compound: a theoretical study, Phase Transitions, 95, 387, 10.1080/01411594.2022.2054808
Tahiri, 2021, Magnetic, magnetocaloric and thermoelectric investigations of perovskite LaFeO3 compound: first principles and Monte Carlo calculations, Comput. Theor. Chem., 1204, 10.1016/j.comptc.2021.113421
Ben Hamed, 2019, First-principles investigations of the magnetic phase diagram of Gd1-xCaxMnO3, Phys. Rev. B, 99, 10.1103/PhysRevB.99.144428
Yang, 2022, Large magnetic entropy change in weberite-type oxides Gd3MO7 (M = Nb, Sb, and Ta), Sci. China Phys. Mech. Astron., 65, 10.1007/s11433-021-1834-4
Palacios, 2018, Magnetic structures and magnetocaloric effect in RVO4(R=Gd, Nd), Phys. Rev. B, 97, 10.1103/PhysRevB.97.214401
Palacios, 2014, Magnetic structure and magnetocalorics of GdPO4, Phys. Rev. B, 90, 10.1103/PhysRevB.90.214423
Pratt, 1977, A continuous demagnetization refrigerator operating near 2 K and a study of magnetic refrigerants, Cryogenics, 17, 689, 10.1016/0011-2275(77)90225-9
Zeleňáková, 2016, Large magnetocaloric effect in fine Gd2O3 nanoparticles embedded in porous silica matrix, Appl. Phys. Lett., 109, 10.1063/1.4963267
Yang, 2021, Cryogenic magnetocaloric effect in distorted double-perovskite Gd2ZnTiO6, J. Mater. Chem. C, 9, 6754, 10.1039/D1TC01789F
Kleinhans, 2022
Stanley, 1999, Scaling, universality, and renormalization: three pillars of modern critical phenomena, Rev. Mod. Phys., 71, S358, 10.1103/RevModPhys.71.S358
Franco, 2008, A universal curve for the magnetocaloric effect: an analysis based on scaling relations, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/28/285207
Franco, 2010, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int. J. Refrig., 33, 465, 10.1016/j.ijrefrig.2009.12.019
Shen, 2002, Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy, J. Appl. Phys., 91, 5240, 10.1063/1.1456957
Law, 2018, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect, Nat. Commun., 9, 2680, 10.1038/s41467-018-05111-w