Regime changes in Bitcoin GARCH volatility dynamics
Tài liệu tham khảo
Ardia, 2008
Ardia, 2018, Forecasting risk with Markov-switching GARCH models: A large-scale performance study, Int. J. Forecast., 34, 733, 10.1016/j.ijforecast.2018.05.004
Ardia, D., Bluteau, K., Boudt, K., Catania, L., Trottier, D. A., 2017. Markov–switching GARCH models in R: The MSGARCH Package. Forthcoming, J. Stat. Softw. doi:10.2139/ssrn.2845809.
Baek, 2015, Bitcoins as an investment or speculative vehicle? A first look, Appl. Econ. Lett., 22, 30, 10.1080/13504851.2014.916379
Balcombe, 2017, Do bubbles have an explosive signature in Markov switching models?, Econ. Model., 66, 81, 10.1016/j.econmod.2017.06.001
Bariviera, 2017, The inefficiency of Bitcoin revisited: A dynamic approach, Econ. Lett., 161, 1, 10.1016/j.econlet.2017.09.013
Baur, D.G., Dimpfl, T., Kuck, K., 2018. Bitcoin, gold and the dollar - a replication and extension. doi:10.1016/j.frl.2017.10.012.
Bauwens, 2014, Marginal likelihood for Markov-switching and change-point GARCH models, J. Econom., 178, 508, 10.1016/j.jeconom.2013.08.017
Berg, 2004, Deviance information criterion for comparing stochastic volatility models, J. Bus. Econ. Stat., 22, 107, 10.1198/073500103288619430
Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, J. Econom., 31, 307, 10.1016/0304-4076(86)90063-1
Bouri, 2017, On the return–volatility relationship in the Bitcoin market around the price crash of 2013, Economic J., 11
Catania, L., Grassi, S., 2017. Modelling crypto–currencies financial time-series. Working paper. doi:10.2139/ssrn.3028486.
Cheah, 2015, Speculative bubbles in Bitcoin markets? an empirical investigation into the fundamental value of Bitcoin, Econ. Lett., 130, 32, 10.1016/j.econlet.2015.02.029
Christoffersen, 1998, Evaluating interval forecasts, Int. Econ. Rev., 39, 841, 10.2307/2527341
Chu, 2017, GARCH modelling of cryptocurrencies, J. Risk Financ. Manag., 10, 10.3390/jrfm10040017
Corbet, 2017, Datestamping the Bitcoin and Ethereum bubbles, Finance Res. Lett. Forthcoming
Corbet, 2017, The influence of central bank monetary policy announcements on cryptocurrency return volatility, Invest. Manag. Financ. Innovat., 14, 60
Corbet, 2018, Exploring the dynamic relationships between cryptocurrencies and other financial assets, Econ. Lett., 165, 28, 10.1016/j.econlet.2018.01.004
Dyhrberg, 2016, Bitcoin, gold and the dollar - a GARCH volatility analysis, Finance Res. Lett., 16, 85, 10.1016/j.frl.2015.10.008
Engle, 2004, CAViaR: Conditional autoregressive Value–at–Risk by regression quantiles, J. Bus. Econ. Stat., 22, 367, 10.1198/073500104000000370
Fernández, 1998, On Bayesian modeling of fat tails and skewness, J. Am. Stat. Assoc., 93, 359
Glaser, F., Zimmermann, K., Haferkon, M., Weber, M. C., Siering, M., 2014. Bitcoin - asset or currency? Revealing users’ hidden intentions. Working paper. https://ssrn.com/abstract=2425247.
Glosten, 1993, On the relation between the expected value and the volatility of the nominal excess return on stocks, J. Financ., 48, 1779, 10.1111/j.1540-6261.1993.tb05128.x
Haas, 2004, A new approach to Markov–switching GARCH models, J. Financ. Econom., 2, 493
Hafner, C.M., 2018. Testing for bubbles in cryptocurrencies with time–varying volatility. Working paper. doi:10.2139/ssrn.3105251.
Katsiampa, 2017, Volatility estimation for Bitcoin, a comparison of GARCH models, Econ. Lett., 158, 3, 10.1016/j.econlet.2017.06.023
Kim, 2017, On the transaction cost of Bitcoin, Finance Res. Lett., 23, 300, 10.1016/j.frl.2017.07.014
Lamoureux, 1990, Persistence in variance, structural change, and the GARCH model, J. Bus. Econ. Stat., 8, 225
Nakamoto, S., 2008. Bitcoin: a peer–to–peer electronic cash system. https://bitcoin.org/bitcoin.pdf.Workingpaper.
Phillip, 2018, A new look at cryptocurrencies, Econ. Lett., 163, 6, 10.1016/j.econlet.2017.11.020
Spiegelhalter, 2002, Bayesian measures of model complexity and fit, J. Royal Stat. Soc. B, 64, 585, 10.1111/1467-9868.00353
Stavroyiannis, 2018, Value–at–Risk and related measures for the Bitcoin, J. Risk Financ., 19, 127, 10.1108/JRF-07-2017-0115
Thies, 2018, Bayesian change point analysis of Bitcoin returns, Financ. Res. Lett., 10.1016/j.frl.2018.03.018
Trottier, 2016, Moments of standardized Fernández-Steel skewed distributions: applications to the estimation of GARCH-type models, Financ. Res. Lett., 18, 311, 10.1016/j.frl.2016.05.006
Vihola, 2012, Robust adaptive Metropolis algorithm with coerced acceptance rate, Stat. Comput., 22, 997, 10.1007/s11222-011-9269-5