Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?

Science of The Total Environment - Tập 568 - Trang 470-479 - 2016
P. Venkata Laxma Reddy1,2, J.A. Hernandez-Viezcas3,2, J.R. Peralta-Videa1,3,2, J.L. Gardea-Torresdey1,3,2
1Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA
2University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX, 79968, USA
3Chemistry Department, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA

Tài liệu tham khảo

Adeleye, 2014, Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles, Environ. Sci. Technol., 48, 12561, 10.1021/es5033426 Adhikari, 2010, Nano-fertiliser-a new dimension in agriculture, Indian J. Fert., 6, 22 Atha, 2012, Copper oxide nanoparticle mediated DNA damage in terrestrial plant models, Environ. Sci. Technol., 46, 1819, 10.1021/es202660k Barkalina, 2014, Nanotechnology in reproductive medicine: emerging applications of nanomaterials, Nanomedicine, 10, 921, 10.1016/j.nano.2014.01.001 Begum, 2012, Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant, J. Hazard. Mater., 243, 212, 10.1016/j.jhazmat.2012.10.025 Benoit, 2013, Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles, Chem. Cent. J., 7, 75, 10.1186/1752-153X-7-75 Bian, 2011, Aggregation and dissolution of 4nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27, 6059, 10.1021/la200570n Boonyanitipong, 2011, Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa, Int. J. Biosci. Biochem Bioinforma., 1, 282 Buzea, 2007, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases, 2, MR17, 10.1116/1.2815690 Castiglione, 2011, The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays, J. Nanopart. Res., 13, 2443, 10.1007/s11051-010-0135-8 Chae, 2011, Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation, Water Res., 45, 308, 10.1016/j.watres.2010.07.067 Dehkourdi, 2013, Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro, Biol. Trace Elem. Res., 155, 283, 10.1007/s12011-013-9788-3 Dimkpa, 2013, Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix, Environ. Sci. Technol., 47, 1082, 10.1021/es302973y Ditta, 2015, Nanoparticles in sustainable agricultural crop production: applications and perspectives, 55 Faisal, 2013, Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death, J. Hazard. Mater., 250, 318, 10.1016/j.jhazmat.2013.01.063 Feizi, 2013, Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill), Chemosphere, 91, 506, 10.1016/j.chemosphere.2012.12.012 Feizi, 2012, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res., 146, 101, 10.1007/s12011-011-9222-7 Feng, 2013, The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth, Environ. Sci. Technol., 47, 9496, 10.1021/es402109n Feng, 2012, Adsorption and desorption characteristics of arsenic onto ceria nanoparticles, Nanoscale Res. Lett., 7, 1, 10.1186/1556-276X-7-84 French, 2009, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol., 43, 1354, 10.1021/es802628n Fugetsu, 2011 Gardea-Torresdey, 2014, Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments, Environ. Sci. Technol., 48, 2526, 10.1021/es4050665 Ghosh, 2015, MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation, Mutat. Res. Fundam. Mol. Mech. Mutagen., 774, 49, 10.1016/j.mrfmmm.2015.03.004 Ghosh, 2008, Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter, Langmuir, 24, 12385, 10.1021/la802015f Gill, 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48, 909, 10.1016/j.plaphy.2010.08.016 Gopal, 2012, Nano-pesticides-a recent approach for pest control, The JPPS., 4, 1 Gottschalk, 2015, Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment, Int. J. Environ. Res. Public Health, 12, 5581, 10.3390/ijerph120505581 Grillo, 2015, Engineered nanoparticles and organic matter: a review of the state-of-the-art, Chemosphere, 119, 608, 10.1016/j.chemosphere.2014.07.049 Haghighi, 2014, The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species, J. Crop. Sci. Biotechnol., 17, 201, 10.1007/s12892-014-0057-6 Hernandez-Viezcas, 2013, In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max), ACS Nano, 7, 1415, 10.1021/nn305196q Hernandez-Viezcas, 2011, Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles, Chem. Eng. J., 170, 346, 10.1016/j.cej.2010.12.021 Hong, 2014, Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants, Environ. Sci. Technol., 48, 4376, 10.1021/es404931g Hong, 2005, Influences of nano-TiO2 on the chloroplast aging of spinach under light, Biol. Trace Elem. Res., 104, 249, 10.1385/BTER:104:3:249 Jaisi, 2009, Single-walled carbon nanotubes exhibit limited transport in soil columns, Environ. Sci. Technol., 43, 9161, 10.1021/es901927y Karunakaran, 2013, Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination, Nanobiotechnology, IET, 7, 70, 10.1049/iet-nbt.2012.0048 Keller, 2015, Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis, J. Environ. Manag., 156, 23, 10.1016/j.jenvman.2015.03.017 Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 1, 10.1007/s11051-013-1692-4 Keller, 2010, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol., 44, 1962, 10.1021/es902987d Khodakovskaya, 2012, Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 6, 2128, 10.1021/nn204643g Khodakovskaya, 2013, Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community, Small, 9, 115, 10.1002/smll.201201225 Klaine, 2008, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1 Kumari, 2011, Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, J. Hazard. Mater., 190, 613, 10.1016/j.jhazmat.2011.03.095 Kunhikrishnan, 2015, Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams, Crit. Rev. Environ. Sci. Technol., 45, 277, 10.1080/10643389.2013.852407 Larue, 2012, Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed, J. Toxicol. Environ. Health, 75, 722, 10.1080/15287394.2012.689800 Lee, 2013, Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum, Environ. Sci. Pollut. R., 20, 848, 10.1007/s11356-012-1069-8 Lee, 2010, Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana, Environ. Toxicol. Chem., 29, 669, 10.1002/etc.58 Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405 Li, 2015, Toxicity of nanomaterials to plants, 101 Liang, 2013, Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil, Environ. Sci. Technol., 47, 12229, 10.1021/es402046u Liman, 2013, Genotoxic effects of bismuth (III) oxide nanoparticles by allium and comet assay, Chemosphere, 93, 269, 10.1016/j.chemosphere.2013.04.076 Lin, 2007, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016 Liu, 2014, Multimedia environmental distribution of engineered nanomaterials, Environ. Sci. Technol., 48, 3281, 10.1021/es405132z Liu, 2013, Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications, Water Res., 47, 6149, 10.1016/j.watres.2013.07.034 Liu, 2009, Mobility of multiwalled carbon nanotubes in porous media, Environ. Sci. Technol., 43, 8153, 10.1021/es901340d Liu, 2015, Enhanced colloidal stability of CeO2 nanoparticles by ferrous ions: adsorption, redox reaction, and surface precipitation, Environ. Sci. Technol., 49, 5476, 10.1021/es506363x Liu, 2014, Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes, Environ. Sci. Technol., 48, 13197, 10.1021/es5034684 López-Moreno, 2010, Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants, Environ. Sci. Technol., 44, 7315, 10.1021/es903891g Luo, 2015, Impact of TiO2 and ZnO nanoparticles at predicted environmentally relevant concentrations on ammonia-oxidizing bacteria cultures under ammonia oxidation, Environ. Sci. Pollut. Res., 22, 2891, 10.1007/s11356-014-3545-9 Luo, 2011, Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: occurrence and sources of titanium nanomaterials in surface sediments from Xiamen Bay, China, J. Environ. Monit., 13, 1046, 10.1039/c0em00199f Lv, 2014, Chemical transformation of zinc oxide nanoparticles as a result of interaction with hydroxyapatite, Colloids Surf. A Physicochem. Eng. Asp., 461, 126, 10.1016/j.colsurfa.2014.07.036 Ma, 2011, Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus), Nanotoxicology, 5, 743, 10.3109/17435390.2010.545487 Ma, 2013, Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility, Environ. Sci. Technol., 47, 2527, 10.1021/es3035347 Mahmoodzadeh, 2014, Effect on germination and early growth characteristics in wheat plants (Triticumaestivum L.) seeds exposed to TiO2 nanoparticles, J Chem Health Risks, 4, 29 Majumdar, 2015, Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis, Environ. Sci. Technol., 49, 13283, 10.1021/acs.est.5b03452 Majumdar, 2014, Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms, J. Hazard. Mater., 278, 279, 10.1016/j.jhazmat.2014.06.009 Markus, 2015, Modeling aggregation and sedimentation of nanoparticles in the aquatic environment, Sci. Total Environ., 506, 323, 10.1016/j.scitotenv.2014.11.056 Mashayekhi, 2012, Effect of natural organic matter on aggregation behavior of C60 fullerene in water, J. Colloid Interface Sci., 374, 111, 10.1016/j.jcis.2012.01.061 Mazhoudi, 1997, Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.), Plant Sci., 127, 129, 10.1016/S0168-9452(97)00116-7 McShane, 2014, Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests, Environ. Sci. Technol., 48, 8135, 10.1021/es500141h Metz, 2009, Engineered nanomaterial transformation under oxidative environmental conditions: development of an in vitro biomimetic assay, Environ. Sci. Technol., 43, 1598, 10.1021/es802217y Mirzajani, 2014, Proteomics study of silver nanoparticles toxicity on Oryza sativa L, Ecotoxicol. Environ. Saf., 108, 335, 10.1016/j.ecoenv.2014.07.013 Morales, 2013, Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil, J. Agric. Food Chem., 61, 6224, 10.1021/jf401628v Mueller, 2008, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42, 4447, 10.1021/es7029637 Mukherjee, 2014, Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil, Metallomics, 6, 132, 10.1039/C3MT00064H Musante, 2012, Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles, Environ. Toxicol., 27, 510, 10.1002/tox.20667 Nair, 2015, Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.), Acta Physiol. Plant., 37, 1, 10.1007/s11738-014-1719-1 Nair, 2012, Effect of carbon nanomaterials on the germination and growth of rice plants, J. Nanosci. Nanotechnol., 12, 2212, 10.1166/jnn.2012.5775 Navarro, 2008, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology, 17, 372, 10.1007/s10646-008-0214-0 Ottofuelling, 2011, Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior, Environ. Sci. Technol., 45, 10045, 10.1021/es2023225 Pachapur, 2016, Behavior and characterization of titanium dioxide and silver nanoparticles in soils, Sci. Total Environ., 10.1016/j.scitotenv.2015.11.090 Parveen, 2015, Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum, J. Clust. Sci., 26, 693, 10.1007/s10876-014-0728-y Peralta-Videa, 2011, Nanomaterials and the environment: a review for the biennium 2008–2010, J. Hazard. Mater., 186, 1, 10.1016/j.jhazmat.2010.11.020 Petrie, 2015, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72, 3, 10.1016/j.watres.2014.08.053 Qi, 2013, Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress, Biol. Trace Elem. Res., 156, 323, 10.1007/s12011-013-9833-2 Qu, 2010, UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC60) nanoparticles, Environ. Sci. Technol., 44, 7821, 10.1021/es101947f Rathnayake, 2014, Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles, Environ. Sci. Technol., 48, 4757, 10.1021/es404544w Rico, 2011, Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 59, 3485, 10.1021/jf104517j Rico, 2013, Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains, J. Agric. Food Chem., 61, 11278, 10.1021/jf404046v Rico, 2014, Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.), J. Agric. Food Chem., 62, 9669, 10.1021/jf503526r Rico, 2015, Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles, Environ. Sci. Pollut. Res., 22, 10551, 10.1007/s11356-015-4243-y Rico, 2015, Chemistry, biochemistry of nanoparticles and their role in antioxidant defense system in plants, Nanotechnology and Plant Sciences-Nanoparticles and Their Impact on Plants, 1 Rispail, 2014, Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile, ACS Appl. Mater. Interfaces, 6, 9100, 10.1021/am501029g Rodrigues, 2012, Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil, Environ. Sci. Technol., 47, 625, 10.1021/es304002q Santimano, 2013, Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria, Environ. Monit. Assess., 185, 7205, 10.1007/s10661-013-3094-6 Scheckel, 2010, Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension, Environ. Sci. Technol., 44, 1307, 10.1021/es9032265 Servin, 2013, Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain, Environ. Sci. Technol., 47, 11592, 10.1021/es403368j Shapira, 2015, The economic contributions of nanotechnology to green and sustainable growth, 409 Sharma, 2012, Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. of Botany, 10.1155/2012/217037 Shaw, 2013, Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings, Chemosphere, 93, 906, 10.1016/j.chemosphere.2013.05.044 Shaymurat, 2012, Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study, Nanotoxicology, 6, 241, 10.3109/17435390.2011.570462 Shen, 2014, Displacement and competitive sorption of organic pollutants on multiwalled carbon nanotubes, Environ. Sci. Pollut. Res., 21, 11979, 10.1007/s11356-014-3115-1 Shen, 2010, Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes, Am. J. Bot., 97, 1602, 10.3732/ajb.1000073 Siddiqui, 2014, Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.), Saudi. J. Biol. Sci., 21, 13, 10.1016/j.sjbs.2013.04.005 Suriyaprabha, 2012, Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions, Curr. Nanosci., 8, 902, 10.2174/157341312803989033 Suzuki, 2012, ROS and redox signalling in the response of plants to abiotic stress, Plant Cell Environ., 35, 259, 10.1111/j.1365-3040.2011.02336.x Tan, 2007, Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles, Appl. Radiat. Isot., 65, 375, 10.1016/j.apradiso.2006.10.014 Thannickal, 2000, Reactive oxygen species in cell signaling, Am. J. Phys. Lung Cell. Mol. Phys., 279, L1005 Theerakarunwong, 2013, Efficiency of titanium dioxide on mungbean seed sterile and their nanotoxicity to mungbean growth in vitro, Int. J. Agric. Biol., 15, 1039 Thuesombat, 2014, Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth, Ecotoxicol. Environ. Saf., 104, 302, 10.1016/j.ecoenv.2014.03.022 Tiwari, 2014, Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture, Appl. Nanosci., 4, 577, 10.1007/s13204-013-0236-7 Tolaymat, 2015, A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials, Sci. Total Environ., 511, 595, 10.1016/j.scitotenv.2014.09.029 Tripathi, 2015, Influence of water soluble carbon dots on the growth of wheat plant, Appl. Nanosci., 5, 609, 10.1007/s13204-014-0355-9 Tripathi, 2011, Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes, Nanoscale., 3, 1176, 10.1039/c0nr00722f Unrine, 2012, Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution, Environ. Sci. Technol., 46, 6915, 10.1021/es204682q Vannini, 2014, Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings, J. Plant Physiol., 171, 1142, 10.1016/j.jplph.2014.05.002 Wang, 2012, Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size, Environ. Sci. Technol., 46, 7151, 10.1021/es300314n Wang, 2008, Sorption of pyrene by regular and nanoscaled mestal oxide particles: influence of adsorbed organic matter, Environ. Sci. Technol., 42, 7267, 10.1021/es8015414 Wang, 2012, The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety, Metallomics, 4, 1105, 10.1039/c2mt20149f Wang, 2010, Adsorption of dialkyl phthalate esters on carbon nanotubes, Environ. Sci. Technol., 44, 6985, 10.1021/es101326j Xiang, 2015, Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds, Environ. Sci. Pollut. Res. Int., 22, 10452, 10.1007/s11356-015-4172-9 Yang, 2012, Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots, Environ. Sci. Technol., 46, 3433, 10.1021/es203485f Yoon, 2014, Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study, Ecotoxicol. Environ. Saf., 100, 131, 10.1016/j.ecoenv.2013.10.014 Zhang, 2012, Transport of fullerene nanoparticles (n C60) in saturated sand and sandy soil: controlling factors and modeling, Environ. Sci. Technol., 46, 7230, 10.1021/es301234m Zhang, 2015, Effects of graphene on seed germination and seedling growth, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-2885-9 Zhang, 2011, Facilitated transport of 2, 2′, 5, 5′-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns, Environ. Sci. Technol., 45, 1341, 10.1021/es102316m Zhao, 2012, Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and bio macromolecule levels, Environ. Int., 40, 244, 10.1016/j.envint.2011.12.003 Zhao, 2012, Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies, Chem. Eng. J., 184, 1, 10.1016/j.cej.2012.01.041 Zhao, 2014, CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus), J. Agric. Food Chem., 62, 2752, 10.1021/jf405476u Zheng, 2005, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace Elem. Res., 104, 83, 10.1385/BTER:104:1:083 Zhou, 2010, Role of morphology in the aggregation kinetics of ZnO nanoparticles, Water Res., 44, 2948, 10.1016/j.watres.2010.02.025 Zhu, 2012, Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species, Environ. Sci. Technol., 46, 12391, 10.1021/es301977w