Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy
Tóm tắt
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell–cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.
Tài liệu tham khảo
Spees JL, Lee RH, Gregory CA (2016) Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 7(1):125. https://doi.org/10.1186/s13287-016-0363-7
Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390
Vilquin JT, Rosset P (2006) Mesenchymal stem cells in bone and cartilage repair: current status. Regen Med 1(4):589–604. https://doi.org/10.2217/17460751.1.4.589
Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742. https://doi.org/10.1155/2013/732742
Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. https://doi.org/10.1002/jcb.20886
Fan XL, Zhang Z, Ma CY, Fu QL (2019) Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep. https://doi.org/10.1042/BSR20182160
Li F, Guo X, Chen SY (2017) Function and therapeutic potential of mesenchymal stem cells in atherosclerosis. Front Cardiovasc Med 4:32. https://doi.org/10.3389/fcvm.2017.00032
Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. https://doi.org/10.1042/BSR20150025
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905
Qin Y, Guan J, Zhang C (2014) Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J 90(1069):643–647. https://doi.org/10.1136/postgradmedj-2013-132387
Nash ME, Fan X, Carroll WM, Gorelov AV, Barry FP, Shaw G, Rochev YA (2013) Thermoresponsive substrates used for the expansion of human mesenchymal stem cells and the preservation of immunophenotype. Stem Cell Rev 9(2):148–157. https://doi.org/10.1007/s12015-013-9428-5
Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, Wang Z, Liao H, Toews GB, Krebsbach PH, Peters-Golden M, Pinsky DJ, Martinez FJ, Thannickal VJ (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117(4):989–996. https://doi.org/10.1172/JCI29713
Yannarelli G, Pacienza N, Cuniberti L, Medin J, Davies J, Keating A (2013) Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31(1):215–220. https://doi.org/10.1002/stem.1262
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. https://doi.org/10.1091/mbc.e02-02-0105
Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402
Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549. https://doi.org/10.1182/blood-2003-04-1291
Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242
De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942. https://doi.org/10.1002/1529-0131(200108)44:8%3c1928:AID-ART331%3e3.0.CO;2-P
Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153(5):1133–1140
Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23(8):1105–1112. https://doi.org/10.1634/stemcells.2004-0330
Carlotti F, Zaldumbide A, Loomans CJ, van Rossenberg E, Engelse M, de Koning EJ, Hoeben RC (2010) Isolated human islets contain a distinct population of mesenchymal stem cells. Islets 2(3):164–173. https://doi.org/10.4161/isl.2.3.11449
Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstrom E, Svensson M, Haegerstrand A, Brundin P (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS ONE 7(4):e35577. https://doi.org/10.1371/journal.pone.0035577
Huang F, Chen M, Chen W, Gu J, Yuan J, Xue Y, Dang J, Su W, Wang J, Zadeh HH, He X, Rong L, Olsen N, Zheng SG (2017) Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via CD39-CD73-adenosine and IDO signals. Front Immunol 8:68. https://doi.org/10.3389/fimmu.2017.00068
Ukai R, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2007) Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma 24(3):508–520. https://doi.org/10.1089/neu.2006.0161
Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264–e277. https://doi.org/10.18295/squmj.2018.18.03.002
Via AG, Frizziero A, Oliva F (2012) Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J 2(3):154–162
Wu M, Zhang R, Zou Q, Chen Y, Zhou M, Li X, Ran R, Chen Q (2018) Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci Rep 8(1):5014. https://doi.org/10.1038/s41598-018-23396-1
Vasandan AB, Shankar SR, Prasad P, Sowmya Jahnavi V, Bhonde RR, Jyothi Prasanna S (2014) Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med 18(2):344–354. https://doi.org/10.1111/jcmm.12192
Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues - Superiority of synovium as a cell source. Arthritis Rheum 52(8):2521–2529. https://doi.org/10.1002/art.21212
Huibregtse BA, Johnstone B, Goldberg VM, Caplan AI (2000) Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells. J Orthopaed Res 18(1):18–24. https://doi.org/10.1002/jor.1100180104
Danisovic L, Varga I, Polak S, Ulicna M, Hlavackova L, Bohmer D, Vojtassak J (2009) Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys 28(1):56–62
Gasiuniene M, Zentelyte A, Wojtas B, Baronaite S, Krasovskaja N, Savickiene J, Gielniewski B, Kaminska B, Utkus A, Navakauskiene R (2019) DNA methyltransferases inhibitors effectively induce gene expression changes suggestive of cardiomyogenic differentiation of human amniotic fluid-derived mesenchymal stem cells via chromatin remodeling. J Tissue Eng Regen Med 13(3):469–481. https://doi.org/10.1002/term.2800
Park J, Lee JH, Yoon BS, Jun EK, Lee G, Kim IY, You S (2018) Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells. Stem Cell Res Ther 9(1):293. https://doi.org/10.1186/s13287-018-1058-z
Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P, Bianco P, Jorgensen C (2011) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev 7(1):32–42. https://doi.org/10.1007/s12015-010-9125-6
Wang WG, Lou SQ, Ju XD, Xia K, Xia JH (2003) In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-beta2. Tissue Cell 35(1):69–77
Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol. https://doi.org/10.1186/1471-2121-10-29
Delorme B, Ringe J, Pontikoglou C, Gaillard J, Langonne A, Sensebe L, Noel D, Jorgensen C, Haupl T, Charbord P (2009) Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells 27(5):1142–1151. https://doi.org/10.1002/stem.34
Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787–1795. https://doi.org/10.1634/stemcells.2007-0979
Wang YX, Ma ZF, Huo N, Tang L, Han C, Duan YZ, Jin Y (2011) Porcine tooth germ cell conditioned medium can induce odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen M 5(5):354–362. https://doi.org/10.1002/term.321
Zhang WB, Walboomers XF, Shi ST, Fan MW, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12(10):2813–2823. https://doi.org/10.1089/ten.2006.12.2813
Luo LH, He Y, Wang XY, Key B, Lee BH, Li HQ, Ye QS (2018) Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int. https://doi.org/10.1155/2018/1731289
Lu H, Wang F, Mei H, Wang S, Cheng L (2018) Human adipose mesenchymal stem cells show more efficient angiogenesis promotion on endothelial colony-forming cells than umbilical cord and endometrium. Stem Cells Int 2018:7537589. https://doi.org/10.1155/2018/7537589
Wang X, Liu L, Mou S, Zhao H, Fang J, Xiang Y, Zhao T, Sha T, Ding J, Hao C (2018) Investigation of platelet-rich plasma in increasing proliferation and migration of endometrial mesenchymal stem cells and improving pregnancy outcome of patients with thin endometrium. J Cell Biochem. https://doi.org/10.1002/jcb.28014
Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2(6):477–488. https://doi.org/10.1186/ar130
Sabapathy V, Ravi S, Srivastava V, Srivastava A, Kumar S (2012) Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int 2012:174328. https://doi.org/10.1155/2012/174328
Oliveira MS, Barreto-Filho JB (2015) Placental-derived stem cells: Culture, differentiation and challenges. World J Stem Cells 7(4):769–775. https://doi.org/10.4252/wjsc.v7.i4.769
Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462. https://doi.org/10.1007/s00441-006-0308-z
De Bari C, Dell'Accio F, Vandenabeele F, Vermeesch JR, Raymackcrs JM, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160(6):909–918. https://doi.org/10.1083/jcb.200212064
Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, Bader A (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17(11):925–932. https://doi.org/10.1111/j.1600-0625.2008.00724.x
Vishnubalaji R, Manikandan M, Al-Nbaheen M, Kadalmani B, Aldahmash A, Alajez NM (2012) In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC Dev Biol. https://doi.org/10.1186/1471-213x-12-7
Shi CM, Cheng TM (2004) Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro. World J Gastroentero 10(17):2550–2552. https://doi.org/10.3748/wjg.v10.i17.2550
Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG, Parnigotto PP (2006) CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18(6):1089–1096
Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, Gu DS, Han ZC, Liu YL (2007) In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem 100(3):608–616. https://doi.org/10.1002/jcb.21078
Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359
Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, Lam FF, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123. https://doi.org/10.1161/CIRCULATIONAHA.109.898312
Lian Q, Zhang Y, Liang X, Gao F, Tse HF (2016) Directed differentiation of human-induced pluripotent stem cells to mesenchymal stem cells. Methods Mol Biol 1416:289–298. https://doi.org/10.1007/978-1-4939-3584-0_17
Gao WX, Sun YQ, Shi J, Li CL, Fang SB, Wang D, Deng XQ, Wen W, Fu QL (2017) Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res Ther 8(1):48. https://doi.org/10.1186/s13287-017-0499-0
Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y, Chiu SM, Liang X, Gao F, Chan CW, Tse HF, Shi J, Fu QL, Lian Q (2015) Insensitivity of human iPS cells-derived mesenchymal stem cells to interferon-gamma-induced hla expression potentiates repair efficiency of hind limb ischemia in immune humanized nod scid gamma mice. Stem Cells 33(12):3452–3467. https://doi.org/10.1002/stem.2094
Spitzhorn LS, Megges M, Wruck W, Rahman MS, Otte J, Degistirici O, Meisel R, Sorg RV, Oreffo ROC, Adjaye J (2019) Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther 10(1):100. https://doi.org/10.1186/s13287-019-1209-x
Perez-Silos V, Camacho-Morales A, Fuentes-Mera L (2016) Mesenchymal stem cells subpopulations: application for orthopedic regenerative medicine. Stem Cells Int 2016:3187491. https://doi.org/10.1155/2016/3187491
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147
Kim N, Cho SG (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28(4):387–402. https://doi.org/10.3904/kjim.2013.28.4.387
Badylak SF, Weiss DJ, Caplan A, Macchiarini P (2012) Engineered whole organs and complex tissues. Lancet 379(9819):943–952. https://doi.org/10.1016/S0140-6736(12)60073-7
Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92(11):4857–4861
Schwartz RE, Reyes M, Koodie L, Jiang YH, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302. https://doi.org/10.1172/Jci200215182
Dai WD, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium - Short- and long-term effects. Circulation 112(2):214–223. https://doi.org/10.1161/Circulationaha.104.527937
Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, Jin HK (2007) Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25(5):1307–1316. https://doi.org/10.1634/stemcells.2006-0561
Sharma K, Husain SY, Das P, Hussain M, Syed MA (2017) Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. In: Pham PV (ed) Liver, Lung and Heart Regeneration. Springer International Publishing, Cham, pp 77–117. doi:10.1007/978–3–319–46693–4_6
Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. https://doi.org/10.1038/cddis.2015.327
Fan XL, Zeng QX, Li X, Li CL, Xu ZB, Deng XQ, Shi J, Chen D, Zheng SG, Fu QL (2018) Induced pluripotent stem cell-derived mesenchymal stem cells activate quiescent T cells and elevate regulatory T cell response via NF-kappaB in allergic rhinitis patients. Stem Cell Res Ther 9(1):170. https://doi.org/10.1186/s13287-018-0896-z
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4(+)CD25(high)FOXP3(+) regulatory T cells. Stem Cells 26(1):212–222. https://doi.org/10.1634/stemcells.2007-0554
Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490. https://doi.org/10.1002/eji.200425405
Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372. https://doi.org/10.1182/blood-2005-07-2657
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333. https://doi.org/10.1182/blood-2007-02-074997
Vacca P, Vitale C, Munari E, Cassatella MA, Mingari MC, Moretta L (2018) Human innate lymphoid cells: their functional and cellular interactions in Decidua. Front Immunol. https://doi.org/10.3389/fimmu.2018.01897
van Hoeven V, Munneke JM, Cornelissen AS, Omar SZ, Spruit MJ, Kleijer M, Bernink JH, Blom B, Voermans C, Hazenberg MD (2018) Mesenchymal stromal cells stimulate the proliferation and il-22 production of group 3 innate lymphoid cells. J Immunol 201(4):1165–1173. https://doi.org/10.4049/jimmunol.1700901
Zhang L, Yu J, Wei W (2018) Advance in targeted immunotherapy for graft-versus-host disease. Front Immunol 9:1087. https://doi.org/10.3389/fimmu.2018.01087
Marigo I, Dazzi F (2011) The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 33(6):593–602. https://doi.org/10.1007/s00281-011-0267-7
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J (2017) Senescence of mesenchymal stem cells (Review). Int J Mol Med 39(4):775–782. https://doi.org/10.3892/ijmm.2017.2912
Yang YK, Ogando CR, Wang See C, Chang TY, Barabino GA (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9(1):131. https://doi.org/10.1186/s13287-018-0876-3
Fafian-Labora JA, Morente-Lopez M, Arufe MC (2019) Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells 11(6):337–346. https://doi.org/10.4252/wjsc.v11.i6.337
Song HF, He S, Li SH, Yin WJ, Wu J, Guo J, Shao ZB, Zhai XY, Gong H, Lu L, Wei F, Weisel RD, Xie J, Li RK (2017) Aged human multipotent mesenchymal stromal cells can be rejuvenated by neuron-derived neurotrophic factor and improve heart function after injury. JACC Basic Transl Sci 2(6):702–716. https://doi.org/10.1016/j.jacbts.2017.07.014
Dong J, Zhang ZH, Huang HS, Mo P, Cheng CF, Liu JW, Huang WZ, Tian CW, Zhang CY, Li J (2018) miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0895-0
Salminen A, Kauppinen A, Kaarniranta K (2017) FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med 95(2):123–131. https://doi.org/10.1007/s00109-016-1477-1
Liang J, Zhang H, Kong W, Deng W, Wang D, Feng X, Zhao C, Hua B, Wang H, Sun L (2018) Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study. Stem Cell Res Ther 9(1):312. https://doi.org/10.1186/s13287-018-1053-4
Munir H, McGettrick HM (2015) Mesenchymal stem cell therapy for autoimmune disease: risks and rewards. Stem Cells Dev 24(18):2091–2100. https://doi.org/10.1089/scd.2015.0008
Shyam H, Singh SK, Kant R, Saxena SK (2017) Mesenchymal stem cells in regenerative medicine: a new paradigm for degenerative bone diseases. Regen Med 12(2):111–114. https://doi.org/10.2217/rme-2016-0162
White IA, Sanina C, Balkan W, Hare JM (2016) Mesenchymal stem cells in cardiology. Methods Mol Biol 1416:55–87. https://doi.org/10.1007/978-1-4939-3584-0_4
Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L (2019) Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 163(1):8–18. https://doi.org/10.5507/bp.2018.071
Broekman W, Khedoe P, Schepers K, Roelofs H, Stolk J, Hiemstra PS (2018) Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax 73(6):565–574. https://doi.org/10.1136/thoraxjnl-2017-210672
Wang YH, Wu DB, Chen B, Chen EQ, Tang H (2018) Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 9(1):227. https://doi.org/10.1186/s13287-018-0972-4
Zhang Y, Li Y, Zhang L, Li J, Zhu C (2018) Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Res Ther 9(1):59. https://doi.org/10.1186/s13287-018-0814-4
Lee NK, Na DL, Chang JW (2018) Killing two birds with one stone: The multifunctional roles of mesenchymal stem cells in the treatment of neurodegenerative and muscle diseases. Histol Histopathol 33(7):629–638. https://doi.org/10.14670/HH-11-951
Volkman R, Offen D (2017) Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35(8):1867–1880. https://doi.org/10.1002/stem.2651
Lo Furno D, Mannino G, Giuffrida R (2018) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 233(5):3982–3999. https://doi.org/10.1002/jcp.26192
Dasari VR, Veeravalli KK, Dinh DH (2014) Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells 6(2):120–133. https://doi.org/10.4252/wjsc.v6.i2.120
Lee HY, Hong IS (2017) Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci 108(10):1939–1946. https://doi.org/10.1111/cas.13334
Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52(1):79–86. https://doi.org/10.1007/DCR.0b013e3181973487
Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S, Hou Y, Zeng X, Gilkeson GS, Sun L (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69(8):1423–1429. https://doi.org/10.1136/ard.2009.123463
Liang J, Gu F, Wang H, Hua B, Hou Y, Shi S, Lu L, Sun L (2010) Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol 6(8):486–489. https://doi.org/10.1038/nrrheum.2010.80
Ansboro S, Roelofs AJ, De Bari C (2017) Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol 29(2):201–207. https://doi.org/10.1097/bor.0000000000000370
Dunavin N, Dias A, Li M, McGuirk J (2017) Mesenchymal stromal cells: what is the mechanism in acute graft-versus-host disease? Biomedicines 5(3):39. https://doi.org/10.3390/biomedicines5030039
Moreira A, Kahlenberg S, Hornsby P (2017) Therapeutic potential of mesenchymal stem cells for diabetes. J Mol Endocrinol 59(3):R109–R120. https://doi.org/10.1530/JME-17-0117
Sun YQ, Deng MX, He J, Zeng QX, Wen W, Wong DS, Tse HF, Xu G, Lian Q, Shi J, Fu QL (2012) Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice. Stem Cells 30(12):2692–2699. https://doi.org/10.1002/stem.1241
Yao Y, Fan XL, Jiang D, Zhang Y, Li X, Xu ZB, Fang SB, Chiu S, Tse HF, Lian Q, Fu QL (2018) Connexin 43-mediated mitochondrial transfer of ipsc-mscs alleviates asthma inflammation. Stem Cell Rep 11(5):1120–1135. https://doi.org/10.1016/j.stemcr.2018.09.012
Fu QL, Chow YY, Sun SJ, Zeng QX, Li HB, Shi JB, Sun YQ, Wen W, Tse HF, Lian Q, Xu G (2012) Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy 67(10):1215–1222. https://doi.org/10.1111/j.1398-9995.2012.02875.x
Wang SY, Fan XL, Yu QN, Deng MX, Sun YQ, Gao WX, Li CL, Shi JB, Fu QL (2017) The lncRNAs involved in mouse airway allergic inflammation following induced pluripotent stem cell-mesenchymal stem cell treatment. Stem Cell Res Ther 8(1):2. https://doi.org/10.1186/s13287-016-0456-3
Li X, Michaeloudes C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, Mak JCW, Bhavsar PK, Chung KF (2018) Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. J Allergy Clin Immunol 141(5):1634–1645. https://doi.org/10.1016/j.jaci.2017.08.017
Lin YD, Fan XL, Zhang H, Fang SB, Li CL, Deng MX, Qin ZL, Peng YQ, Zhang HY, Fu QL (2018) The genes involved in asthma with the treatment of human embryonic stem cell-derived mesenchymal stem cells. Mol Immunol 95:47–55. https://doi.org/10.1016/j.molimm.2018.01.013
Kavanagh H, Mahon BP (2011) Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 66(4):523–531. https://doi.org/10.1111/j.1398-9995.2010.02509.x
Mohammadian M, Boskabady MH, Kashani IR, Jahromi GP, Omidi A, Nejad AK, Khamse S, Sadeghipour HR (2016) Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse. Iran J Basic Med Sci 19(1):55–63
Chuang YC, Liou CW, Chen SD, Wang PW, Chuang JH, Tiao MM, Hsu TY, Lin HY, Lin TK (2017) Mitochondrial transfer from wharton’s jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxid Med Cell Longev. https://doi.org/10.1155/2017/5691215
Fang SB, Zhang HY, Jiang AY, Fan XL, Lin YD, Li CL, Wang C, Meng XC, Fu QL (2018) Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res Ther 9(1):147. https://doi.org/10.1186/s13287-018-0897-y
Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848. https://doi.org/10.3727/096368915X689622
Couto PS, Shatirishvili G, Bersenev A, Verter F (2019) First decade of clinical trials and published studies with mesenchymal stromal cells from umbilical cord tissue. Regen Med 14(4):309–319. https://doi.org/10.2217/rme-2018-0171
Gugliandolo A, Bramanti P, Mazzon E (2019) mesenchymal stem cells: a potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int 2019:3675627. https://doi.org/10.1155/2019/3675627
Cho J, D’Antuono M, Glicksman M, Wang J, Jonklaas J (2018) A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells 7(4):82–93
Attwood SW, Edel MJ (2019) iPS-Cell technology and the problem of genetic instability-can it ever be safe for clinical use? J Clin Med 8(3):288. https://doi.org/10.3390/jcm8030288
Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma RR, Saluja K, Dutta P, Walia R, Minz R, Bhadada S, Das S, Ramakrishnan S (2009) Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev 18(10):1407–1416. https://doi.org/10.1089/scd.2009.0164
Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, Sachdeva N, Sharma RR, Marwaha N, Khandelwal N (2014) Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplant 23(9):1075–1085. https://doi.org/10.3727/096368913X665576
Jiang R, Han Z, Zhuo G, Qu X, Li X, Wang X, Shao Y, Yang S, Han ZC (2011) Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med 5(1):94–100. https://doi.org/10.1007/s11684-011-0116-z
Jeon SR, Park JH, Lee JH, Kim DY, Kim HS, Sung IY, Choi GH, Jeon MH, Kim GG (2010) Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Eng Regenerat Med 7(3):316–322
Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, Padr R, Neuwirth J, Komrska V, Vavra V, Stulik J, Bojar M (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15(8–9):675–687. https://doi.org/10.3727/000000006783464381
Pal R, Venkataramana NK, Jaan M, Bansal A, Balaraju S, Jaan M, Chandra R, Dixit A, Rauthan A, Murgod U, Totey S (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11(7):897–911. https://doi.org/10.3109/14653240903253857
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosur 114(7):935–939. https://doi.org/10.1016/j.clineuro.2012.02.003
Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A, Airan B (2011) Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra 1(1):93–104. https://doi.org/10.1159/000333381
Tsang KS, Ng CPS, Zhu XL, Wong GKC, Lu G, Ahuja AT, Wong KSL, Ng HK, Poon WS (2017) Phase I/II randomized controlled trial of autologous bone marrow-derived mesenchymal stem cell therapy for chronic stroke. World J Stem Cells 9(8):133–143. https://doi.org/10.4252/wjsc.v9.i8.133
Ahn SY, Chang YS, Sung SI, Park WS (2018) Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl Med 7(12):847–856. https://doi.org/10.1002/sctm.17-0219
Liang X, Ding Y, Zhang Y, Tse HF, Lian Q (2014) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23(9):1045–1059. https://doi.org/10.3727/096368913X667709
Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368. https://doi.org/10.1038/nm0405-367
Cselenyak A, Pankotai E, Horvath EM, Kiss L, Lacza Z (2010) Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 11:29. https://doi.org/10.1186/1471-2121-11-29
Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765. https://doi.org/10.1038/nm.2736
Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611. https://doi.org/10.1161/CIRCULATIONAHA.112.114173
Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244. https://doi.org/10.1089/scd.2013.0479
Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20(5):1060–1069. https://doi.org/10.1016/S0736-0266(02)00018-9
Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O'Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartilage 11(1):55–64
Satué M, Schüler C, Ginner N, Erben RG (2019) Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep 9(1):10153. https://doi.org/10.1038/s41598-019-46554-5
Joshi J, Abnavi MD, Kothapalli CR (2019) Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three-dimensional collagen hydrogels: Integrating experiments and modelling. J Tissue Eng Regen M 13(10):1923–1937. https://doi.org/10.1002/term.2943
Han J, Park J, Kim BS (2015) Integration of mesenchymal stem cells with nanobiomaterials for the repair of myocardial infarction. Adv Drug Deliv Rev 95:15–28. https://doi.org/10.1016/j.addr.2015.09.002
Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, Ypey DL, Atsma DE (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 103(2):167–176. https://doi.org/10.1161/CIRCRESAHA.108.176131
Popara J, Accomasso L, Vitale E, Gallina C, Roggio D, Iannuzzi A, Raimondo S, Rastaldo R, Alberto G, Catalano F, Martra G, Turinetto V, Pagliaro P, Giachino C (2018) Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration. Nanomedicine 13(10):1121–1138. https://doi.org/10.2217/nnm-2017-0309
Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58(4):570–581. https://doi.org/10.1136/gut.2008.154880
Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YRV, Fang SCY, Yang VW, Lee OK (2008) Stem cell therapy for liver disease: Parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134(7):2111–2121. https://doi.org/10.1053/j.gastro.2008.03.015
Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946. https://doi.org/10.2217/rme.10.72
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Barshack I, Rosner M, Rotenstreich Y (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144. https://doi.org/10.1016/j.exer.2013.10.023
Sottile F, Aulicino F, Theka I, Cosma MP (2016) Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Sci Rep 6:36863. https://doi.org/10.1038/srep36863
Zhang LN, Kong CF, Zhao D, Cong XL, Wang SS, Ma L, Huang YH (2019) Fusion with mesenchymal stem cells differentially affects tumorigenic and metastatic abilities of lung cancer cells. J Cell Physiol 234(4):3570–3582. https://doi.org/10.1002/jcp.27011
Melzer C, von der Ohe J, Hass R (2019) In vivo cell fusion between mesenchymal stroma/stem-like cells and breast cancer cells. Cancers. https://doi.org/10.3390/cancers11020185
Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843
Akiyama K, Chen C, Wang DD, Xu XT, Qu CY, Yamaza T, Cai T, Chen WJ, Sun LY, Shi ST (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-Ligand-/FAS-Mediated T cell apoptosis. Cell Stem Cell 10(5):544–555. https://doi.org/10.1016/j.stem.2012.03.007
Zhong H, Fan X-L, Fang S-B, Lin Y-D, Wen W, Fu Q-L (2019) Human pluripotent stem cell-derived mesenchymal stem cells prevent chronic allergic airway inflammation via TGF-β1-Smad2/Smad3 signaling pathway in mice. Mol Immunol 109:51–57. https://doi.org/10.1016/j.molimm.2019.02.017
Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621. https://doi.org/10.1182/blood-2003-11-3909
Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164(7):3596–3599
Sheng HM, Wang Y, Jin YQ, Zhang QY, Zhang Y, Wang L, Shen B, Yin S, Liu W, Cui L, Li NL (2008) A critical role of IFN gamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7–H1. Cell Res 18(8):846–857. https://doi.org/10.1038/cr.2008.80
Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. https://doi.org/10.1182/blood-2004-04-1559
Nemeth K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu XZ, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2dependent reprogramming of host macrophages to increase their interleukin10 production. Nat Med 15 (1):42-49. doi:10.1038/nm.1905.
Xu G, Zhang Y, Zhang L, Ren G, Shi Y (2007) The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun 361(3):745–750. https://doi.org/10.1016/j.bbrc.2007.07.052
Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228–234. https://doi.org/10.1182/blood-2006-02-002246
Nasef A, Mazurier C, Bouchet S, Francois S, Chapel A, Thierry D, Gorin NC, Fouillard L (2008) Leukemia inhibitory factor: role in human mesenchymal stem cells mediated immunosuppression. Cell Immunol 253(1–2):16–22. https://doi.org/10.1016/j.cellimm.2008.06.002
Lepelletier Y, Lecourt S, Renand A, Arnulf B, Vanneaux V, Fermand JP, Menasche P, Domet T, Marolleau JP, Hermine O, Larghero J (2010) Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells Dev 19(7):1075–1079. https://doi.org/10.1089/scd.2009.0212
Di Ianni M, Del Papa B, De Ioanni M, Moretti L, Bonifacio E, Cecchini D, Sportoletti P, Falzetti F, Tabilio A (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36(3):309–318. https://doi.org/10.1016/j.exphem.2007.11.007
Tsyb AF, Petrov VN, Konoplyannikov AG, Saypina EV, Lepechina LA, Kalsina S, Semenkova IV, Agaeva EV (2008) In vitro inhibitory effect of mesenchymal stem cells on zymosan-induced production of reactive oxygen species. Bull Exp Biol Med 146(1):158–164
Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126. https://doi.org/10.1182/blood-2004-02-0586
Oh JY, Lee RH, Yu JM, Ko JH, Lee HJ, Ko AY, Roddy GW, Prockop DJ (2012) Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Mol Ther 20(11):2143–2152. https://doi.org/10.1038/mt.2012.165
Zhang Y, Ge XH, Guo XJ, Guan SB, Li XM, Gu W, Xu WG (2017) Bone marrow mesenchymal stem cells inhibit the function of dendritic cells by secreting galectin-1. Biomed Res Int 2017:3248605. https://doi.org/10.1155/2017/3248605
Ding Y, Liang X, Zhang Y, Yi L, Shum HC, Chen Q, Chan BP, Fan H, Liu Z, Tergaonkar V, Qi Z, Tse HF, Lian Q (2018) Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation. Cell Death Dis 9(3):386. https://doi.org/10.1038/s41419-018-0414-3
He JG, Xie QL, Li BB, Zhou L, Yan D (2018) Exosomes derived from IDO1-overexpressing rat bone marrow mesenchymal stem cells promote immunotolerance of cardiac allografts. Cell Transplant. https://doi.org/10.1177/0963689718805375
Sivanathan KN, Gronthos S, Grey ST, Rojas-Canales D, Coates PT (2017) Immunodepletion and hypoxia preconditioning of mouse compact bone cells as a novel protocol to isolate highly immunosuppressive mesenchymal stem cells. Stem Cells Dev 26(7):512–527. https://doi.org/10.1089/scd.2016.0180
Killer MC, Nold P, Henkenius K, Fritz L, Riedlinger T, Barckhausen C, Frech M, Hackstein H, Neubauer A, Brendel C (2017) Immunosuppressive capacity of mesenchymal stem cells correlates with metabolic activity and can be enhanced by valproic acid. Stem Cell Res Ther 8(1):100. https://doi.org/10.1186/s13287-017-0553-y
Li W, Ren G, Huang Y, Su J, Han Y, Li J, Chen X, Cao K, Chen Q, Shou P, Zhang L, Yuan ZR, Roberts AL, Shi S, Le AD, Shi Y (2012) Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 19(9):1505–1513. https://doi.org/10.1038/cdd.2012.26
Cuerquis J, Romieu-Mourez R, François M, Routy J-P, Young YK, Zhao J, Eliopoulos N (2014) Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α; stimulation. Cytotherapy 16(2):191–202. https://doi.org/10.1016/j.jcyt.2013.11.008
Siekmann AF, Affolter M, Belting HG (2013) The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res 319(9):1255–1263. https://doi.org/10.1016/j.yexcr.2013.01.019
Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Brit Med Bull 108(1):25–53. https://doi.org/10.1093/bmb/ldt031
Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7:86–88. https://doi.org/10.1034/j.1399-3046.7.s3.13.x
Zhang B, Wu XD, Zhang X, Sun YX, Yan YM, Shi H, Zhu YH, Wu LJ, Pan ZJ, Zhu W, Qian H, Xu WR (2015) Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway. Stem Cell Transl Med 4(5):513–522. https://doi.org/10.5966/sctm.2014-0267
Merino-Gonzalez C, Zuniga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomon C, Aguayo C (2016) Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol. https://doi.org/10.3389/fphys.2016.00024
Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549. https://doi.org/10.1161/01.Cir.0000124062.31102.57
Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370. https://doi.org/10.1634/stemcells.2006-0686
Kinnaird T, Stabile E, Burnett MS, Epstein SE (2004) Bone marrow-derived cells for enhancing collateral development-Mechanisms, animal data, and initial clinical experiences. Circ Res 95(4):354–363. https://doi.org/10.1161/01.Res.0000137878.26174.66
Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. Faseb J 21(12):3197–3207. https://doi.org/10.1096/fj.06-6558com
Ratushnyy A, Ezdakova M, Yakubets D, Buravkova L (2018) Angiogenic Activity of Human Adipose-Derived Mesenchymal Stem Cells Under Simulated Microgravity. Stem Cells Dev 27(12):831–837. https://doi.org/10.1089/scd.2017.0262
Bao L, Meng Q, Li Y, Deng S, Yu Z, Liu Z, Zhang L, Fan H (2017) C-Kit Positive cardiac stem cells and bone marrow–derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner. J Cardiac Fail 23(5):403–415. https://doi.org/10.1016/j.cardfail.2017.03.002
Sanz L, Santos-Valle P, Alonso-Camino V, Salas C, Serrano A, Vicario JL, Cuesta AM, Compte M, Sanchez-Martin D, Alvarez-Vallina L (2008) Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 75(3):308–314. https://doi.org/10.1016/j.mvr.2007.11.007
Huang NF, Lam A, Fang Q, Sievers RE, Li S, Lee RJ (2009) Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen Med 4(4):527–538. https://doi.org/10.2217/rme.09.32
Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng 15(7):1751–1761. https://doi.org/10.1089/ten.tea.2008.0254
Botto S, Streblow DN, DeFilippis V, White L, Kreklywich CN, Smith PP, Caposio P (2011) IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117(1):352–361. https://doi.org/10.1182/blood-2010-06-291245
Boomsma RA, Geenen DL (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0035685
Koch S, Tugues S, Li XJ, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183. https://doi.org/10.1042/Bj20110301
Liang X, Ding Y, Lin F, Zhang Y, Zhou X, Meng Q, Lu X, Jiang G, Zhu H, Chen Y, Lian Q, Fan H, Liu Z (2019) Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. Faseb J 33(3):4559–4570. https://doi.org/10.1096/fj.201801690R
Qian D, Gong J, He Z, Hua J, Lin S, Xu C, Meng H, Song Z (2015) Bone marrow-derived mesenchymal stem cells repair necrotic pancreatic tissue and promote angiogenesis by secreting cellular growth factors involved in the SDF-1 alpha /CXCR4 axis in rats. Stem Cells Int 2015:306836. https://doi.org/10.1155/2015/306836
Dong F, Harvey J, Finan A, Weber K, Agarwal U, Penn MS (2012) Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation 126(3):314–324. https://doi.org/10.1161/Circulationaha.111.082453
Pasquet M, Golzio M, Mery E, Rafii A, Benabbou N, Mirshahi P, Hennebelle I, Bourin P, Allal B, Teissie J, Mirshahi M, Couderc B (2010) Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. Int J Cancer 126(9):2090–2101. https://doi.org/10.1002/ijc.24886
Tao HY, Han ZB, Han ZC, Li ZJ (2016) Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int. https://doi.org/10.1155/2016/1314709
Zhou M, Liu Z, Liu C, Jiang XF, Wei ZQ, Qiao W, Ran F, Wang W, Qiao T, Liu CJ (2012) Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparincoated decellularized scaffolds. J Biomed Mater Res 100(1):111–120. https://doi.org/10.1002/jbm.b.31928
Kaga T, Kawano H, Sakaguchi M, Nakazawa T, Taniyama Y, Morishita R (2012) Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor. Vasc Pharmacol 57(1):3–9. https://doi.org/10.1016/j.vph.2012.02.002
Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289. https://doi.org/10.1016/j.yjmcc.2010.08.005
Kwon S, Ki SM, Park SE, Kim MJ, Hyung B, Lee NK, Shim S, Choi BO, Na DL, Lee JE, Chang JW (2016) Anti-apoptotic effects of human Wharton’s jelly-derived mesenchymal stem cells on skeletal muscle cells mediated via secretion of XCL1. Mol Ther 24(9):1550–1560. https://doi.org/10.1038/mt.2016.125
Meirelles LD, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth F R 20(5–6):419–427. https://doi.org/10.1016/j.cytogfr.2009.10.002
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298. https://doi.org/10.1161/01.CIR.0000121425.42966.F1
Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292(5):F1626–1635. https://doi.org/10.1152/ajprenal.00339.2006
Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, Arita K, Nishimura M, Kato Y, Kurisu K (2008) Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett 430(2):109–114. https://doi.org/10.1016/j.neulet.2007.10.046
Wang SP, Wang ZH, Peng DY, Li SM, Wang H, Wang XH (2012) Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep 6(4):848–854. https://doi.org/10.3892/mmr.2012.997
Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619
Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312
Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–236. https://doi.org/10.1016/j.athoracsur.2005.02.072
Zhang Y, Yu S, Tuazon JP, Lee JY, Corey S, Kvederis L, Kingsbury C, Kaneko Y, Borlongan CV (2019) Neuroprotective effects of human bone marrow mesenchymal stem cells against cerebral ischemia are mediated in part by an anti-apoptotic mechanism. Neural Regen Res 14(4):597–604. https://doi.org/10.4103/1673-5374.247464
Pan GZ, Yang Y, Zhang J, Liu W, Wang GY, Zhang YC, Yang Q, Zhai FX, Tai Y, Liu JR, Zhang Q, Chen GH (2012) Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. J Surg Res 178(2):935–948. https://doi.org/10.1016/j.jss.2012.04.070
Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316
Kamarajan P, Bunek J, Lin Y, Nunez G, Kapila YL (2010) Receptor-interacting protein shuttles between cell death and survival signaling pathways. Mol Biol Cell 21(3):481–488. https://doi.org/10.1091/mbc.E09-06-0530
Liu ZY, Ganju RK, Wang JF, Schweitzer K, Weksler B, Avraham S, Groopman JE (1997) Characterization of signal transduction pathways in human bone marrow endothelial cells. Blood 90(6):2253–2259
Redondo J, Sarkar P, Kemp K, Heesom KJ, Wilkins A, Scolding NJ, Rice CM (2018) Dysregulation of mesenchymal stromal cell antioxidant responses in progressive multiple sclerosis. Stem Cells Transl Med 7(10):748–758. https://doi.org/10.1002/sctm.18-0045
Blaser H, Dostert C, Mak TW, Brenner D (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26(4):249–261. https://doi.org/10.1016/j.tcb.2015.12.002
Russell EG, Cotter TG (2015) New insight into the role of reactive oxygen species (ROS) in cellular signal-transduction processes. Int Rev Cel Mol Bio 319:221–254. https://doi.org/10.1016/bs.ircmb.2015.07.004
Kreuz S, Fischle W (2016) Oxidative stress signaling to chromatin in health and disease. Epigenomics 8(6):843–862. https://doi.org/10.2217/epi-2016-0002
Ohkouchi S, Block GJ, Katsha AM, Kanehira M, Ebina M, Kikuchi T, Saijo Y, Nukiwa T, Prockop DJ (2012) Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 20(2):417–423. https://doi.org/10.1038/mt.2011.259
Li J, Li D, Liu X, Tang S, Wei F (2012) Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm 9(1):33. https://doi.org/10.1186/1476-9255-9-33
Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96. https://doi.org/10.1016/j.brainres.2011.10.038
Liu DJ, Huang LP, Wang YL, Wang W, Wehrens XHT, Belousova T, Abdelrahim M, DiMattia G, Sheikh-Hamad D (2012) Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. PLoS ONE. https://doi.org/10.1371/journal.pone.0036994
Ono M, Ohkouchi S, Kanehira M, Tode N, Kobayashi M, Ebina M, Nukiwa T, Irokawa T, Ogawa H, Akaike T, Okada Y, Kurosawa H, Kikuchi T, Ichinose M (2015) Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1. Mol Ther 23(3):549–560. https://doi.org/10.1038/mt.2014.217
Ono M, Ohkouchi S, Kanehira M, Tode N, Kikuchi T, Ichinose M (2014) The Enhancement Of Stanniocalcin-1 (STC1) Secretion Increases The Ability Of Mesenchymal Stem Cells (MSCs) Reducing Bleomycin-Induced Lung Fibrosis In Mice Model Through Inhibition Of ROS/Endoplasmic Reticulum Stress (ER-Stress)/TGF?1 Pathway. In: C108. IS THERE ANYTHING THEY CAN'T DO? DIVERSE FUNCTIONAL ACTIVITIES OF MESENCHYMAL STEM AND STROMAL CELLS. American Thoracic Society International Conference Abstracts. American Thoracic Society, pp A5305-A5305. doi:10.1164/ajrccm-conference.2014.189.1_MeetingAbstracts.A5305
Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, Wee WR, Prockop DJ (2014) Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells 32(6):1553–1563. https://doi.org/10.1002/stem.1608
Chen XX, Zhang YL, Wang WJ, Liu ZQ, Meng JG, Han ZH (2018) Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cell Physiol Biochem 49(1):101–122. https://doi.org/10.1159/000492847
Zhang ZH, Zhu W, Ren HZ, Zhao X, Wang S, Ma HC, Shi XL (2017) Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther 8(1):70. https://doi.org/10.1186/s13287-017-0524-3
Yu J, Li MC, Qu ZL, Yan D, Li DJ, Ruan QR (2010) SDF-1/CXCR4-Mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. J Cardiovasc Pharm 55(5):496–505. https://doi.org/10.1097/FJC.0b013e3181d7a384
Hoban DB, Howard L, Dowd E (2015) Gdnf-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s Disease. Neuroscience 303:402–411. https://doi.org/10.1016/j.neuroscience.2015.07.014
Lv BK, Li F, Fang J, Xu LM, Sun CM, Han JB, Hua T, Zhang ZF, Feng ZM, Wang QH, Jiang XD (2016) Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury. Front Cell Neurosci. https://doi.org/10.3389/fncel.2016.00283
Consentius C, Reinke P, Volk HD (2015) Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 10(3):305–315. https://doi.org/10.2217/Rme.15.14
Sivanathan KN, Gronthos S, Rojas-Canales D, Thierry B, Coates PT (2014) Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev 10(3):351–375. https://doi.org/10.1007/s12015-014-9495-2
Duffy MM, Pindjakova J, Hanley SA, McCarthy C, Weidhofer GA, Sweeney EM, English K, Shaw G, Murphy JM, Barry FP, Mahon BP, Belton O, Ceredig R, Griffin MD (2011) Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 41(10):2840–2851. https://doi.org/10.1002/eji.201141499
Kovach TK, Dighe AS, Lobo PI, Cui Q (2015) Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015:752510. https://doi.org/10.1155/2015/752510
Luz-Crawford P, Noel D, Fernandez X, Khoury M, Figueroa F, Carrion F, Jorgensen C, Djouad F (2012) Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS ONE. https://doi.org/10.1371/journal.pone.0045272
Sioud M, Mobergslien A, Boudabous A, Floisand Y (2011) Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins. Int J Oncol 38(2):385–390. https://doi.org/10.3892/ijo.2010.869
English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156(1):149–160. https://doi.org/10.1111/j.1365-2249.2009.03874.x
Casado JG, Tarazona R, Sanchez-Margallo FM (2013) NK and MSCs crosstalk: The sense of immunomodulation and their sensitivity. Stem Cell Rev Rep 9(2):184–189. https://doi.org/10.1007/s12015-013-9430-y
Chatterjee D, Tufa DM, Baehre H, Hass R, Schmidt RE, Jacobs R (2014) Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood 123(4):594–595. https://doi.org/10.1182/blood-2013-09-524827
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, Li D, Du M (2019) Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol. https://doi.org/10.1038/s41423-019-0204-6
Zhang B, Liu R, Shi D, Liu XX, Chen Y, Dou XW, Zhu XS, Lu CH, Liang W, Liao LM, Zenke M, Zhao RCH (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113(1):46–57. https://doi.org/10.1182/blood-2008-04-154138
Loibl M, Binder A, Herrmann M, Duttenhoefer F, Richards RG, Nerlich M, Alini M, Verrier S (2014) Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int. https://doi.org/10.1155/2014/395781
Menge T, Gerber M, Wataha K, Reid W, Guha S, Cox CS, Dash P, Reitz MS, Khakoo AY, Pati S (2013) Human mesenchymal stem cells inhibit endothelial proliferation and angiogenesis via cell-cell contact through modulation of the VE-Cadherin/beta-Catenin signaling pathway. Stem Cells Dev 22(1):148–157. https://doi.org/10.1089/scd.2012.0165
Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 25(1):31–31. https://doi.org/10.1186/s12929-018-0429-1
Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT, Zorov DB (2018) Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. https://doi.org/10.3390/molecules23030687
Torralba D, Baixauli F, Sanchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107. https://doi.org/10.3389/fcell.2016.00107
Sinha P, Islam MN, Bhattacharya S, Bhattacharya J (2016) Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr Opin Genet Dev 38:97–101. https://doi.org/10.1016/j.gde.2016.05.002
Feng Y, Zhu R, Shen J, Wu J, Lu W, Zhang J, Zhang J, Liu K (2019) Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 28(10):674–682. https://doi.org/10.1089/scd.2018.0248
Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, Renard P (2014) Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol 54:174–185. https://doi.org/10.1016/j.biocel.2014.07.015
Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. https://doi.org/10.1038/nrm3028
Boukelmoune N, Chiu GS, Kavelaars A, Heijnen CJ (2018) Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun 6(1):139. https://doi.org/10.1186/s40478-018-0644-8
Watkins J, Basu S, Bogenhagen DF (2008) A quantitative proteomic analysis of mitochondrial participation in p19 cell neuronal differentiation. J Proteome Res 7(1):328–338. https://doi.org/10.1021/pr070300g
Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7):547–564. https://doi.org/10.1515/hsz-2012-0119
Jiang D, Gao F, Zhang Y, Wong DS, Li Q, Tse HF, Xu G, Yu Z, Lian Q (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7(11):e2467. https://doi.org/10.1038/cddis.2016.358
Jiang D, Xiong GY, Feng H, Zhang Z, Chen PK, Yan B, Chen L, Gandhervin K, Ma CY, Li C, Han S, Zhang YL, Liao C, Lee TL, Tse HF, Fu QL, Chiu K, Lian QZ (2019) Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics 9(8):2395–2410. https://doi.org/10.7150/thno.29422
Li H, Wang C, He T, Zhao T, Chen YY, Shen YL, Zhang X, Wang LL (2019) Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 9(7):2017–2035. https://doi.org/10.7150/thno.29400
Ahmad T, Mukherjee S, Pattnaik BR, Kumar M, Singh S, Rehman R, Kumar M, Jha A, Wani M, Mabalirajan U, Ghosh B, Sinha Roy S, Agrawal A (2013) Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury. Biophys J 104(2):659a. https://doi.org/10.1016/j.bpj.2012.11.3638
Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, Wani MR, Roy SS, Mabalirajan U, Ghosh B, Agrawal A (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. Embo J 33(9):994–1010. https://doi.org/10.1002/embj.201386030
Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, Yue W, Li X, Chiu SM, Chai YH, Liang Y, Chow Y, Han S, Xu A, Tse HF, Lian Q (2016) iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-alpha yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Reports 7(4):749–763. https://doi.org/10.1016/j.stemcr.2016.08.009
Pacak CA, Preble JM, Kondo H, Seibel P, Levitsky S, Del Nido PJ, Cowan DB, McCully JD (2015) Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol Open 4(5):622–626. https://doi.org/10.1242/bio.201511478
Sinclair KA, Yerkovich ST, Hopkins PM, Chambers DC (2016) Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther 7(1):91. https://doi.org/10.1186/s13287-016-0354-8
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, Krasnodembskaya AD (2017) Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 196(10):1275–1286. https://doi.org/10.1164/rccm.201701-0170OC
Dostert G, Mesure B, Menu P, Velot É (2017) How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 5:6–6. https://doi.org/10.3389/fcell.2017.00006
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138
Lai RC, Tan SS, Yeo RWY, Choo ABH, Reiner AT, Su Y, Shen Y, Fu Z, Alexander L, Sze SK, Lim SK (2016) MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Ves 5:29828–29828. https://doi.org/10.3402/jev.v5.29828
Li Y, Cheng Q, Hu G, Deng T, Wang Q, Zhou J, Su X (2018) Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke. Exp Ther Med 15(5):4067–4079. https://doi.org/10.3892/etm.2018.5993
Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R (2016) The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 18(1):13–24. https://doi.org/10.1016/j.jcyt.2015.10.008
Galieva LR, James V, Mukhamedshina YO, Rizvanov AA (2019) Therapeutic potential of extracellular vesicles for the treatment of nerve disorders. Front Neurosci 13:163. https://doi.org/10.3389/fnins.2019.00163
Montemurro T, Vigano M, Ragni E, Barilani M, Parazzi V, Boldrin V, Lavazza C, Montelatici E, Banfi F, Lauri E, Giovanelli S, Baccarin M, Guerneri S, Giordano R, Lazzari L (2016) Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration. Eur J Cell Biol 95(6–7):228–238. https://doi.org/10.1016/j.ejcb.2016.04.003
Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, Montgomery EN, Mellema MS, Bardini RL, Contreras Z, Hoon M, Bauer G, Fink KD, Fury B, Hendrix KJ, Chedin F, El-Andaloussi S, Hwang B, Mulligan MS, Lehtio J, Nolta JA (2016) Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells 34(3):601–613. https://doi.org/10.1002/stem.2298
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. Febs Lett 589(11):1257–1265. https://doi.org/10.1016/j.febslet.2015.03.031
Feng YL, Huang W, Wani M, Yu XY, Ashraf M (2014) Ischemic Preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. https://doi.org/10.1371/journal.pone.0088685
Wang X, Gu H, Qin D, Yang L, Huang W, Essandoh K, Wang Y, Caldwell CC, Peng T, Zingarelli B, Fan GC (2015) Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep 5:13721. https://doi.org/10.1038/srep13721
Song Y, Dou H, Li X, Zhao X, Li Y, Liu D, Ji J, Liu F, Ding L, Ni Y, Hou Y (2017) Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1beta-primed mesenchymal stem cells against sepsis. Stem Cells 35(5):1208–1221. https://doi.org/10.1002/stem.2564
Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, Qian X, Wu M, Ji K, Zhao Y, Wang Y, Liu H, Xing X (2016) Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing. Stem Cells Transl Med 5(10):1425–1439. https://doi.org/10.5966/sctm.2015-0367
Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G, Benigni A (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22(5):772–780. https://doi.org/10.1089/scd.2012.0266
Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, Xu L, Zhang HX, Qiu XT, Li CC, Wang KK, Shen H, Zhang GG, Bai YP (2018) Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 8(22):6163–6177. https://doi.org/10.7150/thno.28021
Gong XH, Liu H, Wang SJ, Liang SW, Wang GG (2019) Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol 234(8):13878–13893. https://doi.org/10.1002/jcp.28070
Khare D, Or R, Resnick I, Barkatz C, Almogi-Hazan O, Avni B (2018) Mesenchymal stromal cell-derived exosomes affect mRNA expression and function of B-lymphocytes. Front Immunol 9:3053. https://doi.org/10.3389/fimmu.2018.03053
Di Trapani M, Bassi G, Midolo M, Gatti A, Kamga PT, Cassaro A, Carusone R, Adamo A, Krampera M (2016) Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 6:24120. https://doi.org/10.1038/srep24120
Del Fattore A, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M, Fierabracci A, Muraca M (2015) Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T Lymphocytes. Cell Transplant 24(12):2615–2627. https://doi.org/10.3727/096368915X687543
Kerkela E, Laitinen A, Rabina J, Valkonen S, Takatalo M, Larjo A, Veijola J, Lampinen M, Siljander P, Lehenkari P, Alfthan K, Laitinen S (2016) Adenosinergic immunosuppression by human mesenchymal stromal cells requires co-operation with T cells. Stem Cells 34(3):781–790. https://doi.org/10.1002/stem.2280
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M (2017) MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell Oncol 40(5):457–470. https://doi.org/10.1007/s13402-017-0335-7
Lopatina T, Gai C, Deregibus MC, Kholia S, Camussi G (2016) Cross Talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids. Front Oncol 6:125. https://doi.org/10.3389/fonc.2016.00125
Whiteside TL (2018) Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol 35:69–79. https://doi.org/10.1016/j.smim.2017.12.003
Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A, Hass R (2015) Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol 47(1):244–252. https://doi.org/10.3892/ijo.2015.3001
Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G (2018) Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer 9(17):3129–3137. https://doi.org/10.7150/jca.25376
Carty F, Mahon BP, English K (2017) The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents? Clin Exp Immunol 188(1):1–11. https://doi.org/10.1111/cei.12929
Engela AU, Baan CC, Peeters AMA, Weimar W, Hoogduijn MJ (2013) Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-Cells. Cell Transplant 22(1):41–54. https://doi.org/10.3727/096368912x636984
Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC (2019) Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther 27(1):25–33. https://doi.org/10.4062/biomolther.2017.260
Braza F, Dirou S, Forest V, Sauzeau V, Hassoun D, Chesne J, Cheminant-Muller MA, Sagan C, Magnan A, Lemarchand P (2016) Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells 34(7):1836–1845. https://doi.org/10.1002/stem.2344
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Goncalves RM (2018) Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 9:2837. https://doi.org/10.3389/fimmu.2018.02837
Zimmermann JA, Hettiaratchi MH, McDevitt TC (2017) Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-gamma within three-dimensional mesenchymal stem cell constructs. Stem Cell Transl Med 6(1):223–237. https://doi.org/10.5966/sctm.2016-0044
Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. P Natl Acad Sci USA 107(31):13724–13729. https://doi.org/10.1073/pnas.1008117107
Mao AS, Ozkale B, Shah NJ, Vining KH, Descombes T, Zhang LY, Tringides CM, Wong SW, Shin JW, Scadden DT, Weitz DA, Mooney DJ (2019) Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. P Natl Acad Sci USA 116(31):15392–15397. https://doi.org/10.1073/pnas.1819415116