Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: A reaction-transport model

Geochimica et Cosmochimica Acta - Tập 73 - Trang 2000-2022 - 2009
Sandra Arndt1, Almut Hetzel2, Hans-Jürgen Brumsack2
1Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
2Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany

Tài liệu tham khảo

Abramowitz, 1972 Aizenshtat, 1995, Role of sulfur in the transformation of sedimentary organic matter: a mechanistic overview, ACS Symp. Ser., 612, 378 Aller, 2004, Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): net loss of terrestrial C and diagenetic fractionation of C isotopes, Geochim. Cosmochim. Acta, 68, 1815, 10.1016/j.gca.2003.10.028 Aris, 1968, Prolegomena to the rational analysis of systems of chemical reactions, II, Arch. Rational Mech. Anal., 27, 539, 10.1007/BF00251438 Arndt, 2006, Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise), Geochim. Cosmochim. Acta, 70, 408, 10.1016/j.gca.2005.09.010 Arthur, 1979, Carbonaceous sediments in the North and South Atlantic: the role of salinity in stable stratification of Early Cretaceous basins, 10.1029/ME003p0375 Arthur, 1994, Marine black shales: depositional mechanisms and environments of ancient deposits, Annu. Rev. Earth Planet. Sci., 22, 499, 10.1146/annurev.ea.22.050194.002435 Arthur, 1987, The Cenomanian–Turonian oceanic anoxic event. II: Paleoceanographic controls on organic matter production and preservation, Brooks Fleet, 401 Arthur, 1988, Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, 714, 10.1038/335714a0 Arthur M. A., Jenkyns H. C., Brumsack H.-J. and Schlanger S. O. (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Cretaceous Resources Events and Rythms. Berner, 1978, Sulfate reduction and the role of deposition of marine sediments, Earth Planet. Sci. Lett., 37, 492, 10.1016/0012-821X(78)90065-1 Berner, 1980 Betts, 1991, The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen, Palaeogeogr. Palaeoclimatol. Palaeoecol., 37, 5, 10.1016/0031-0182(91)90178-T Bosatta, 1985, Theoretical analysis of decomposition of heterogeneous substrates, Soil Biol. Biochem., 17, 601, 10.1016/0038-0717(85)90035-5 Bosatta, 1995, The power and reactive continuum models as particular case of the q-theory of organic matter dynamics, Geochim. Cosmochim. Acta, 59, 3833, 10.1016/0016-7037(95)00287-A Bosbach, 2002, Linking molecular-scale barite precipitation mechanisms with macroscopic crystal growth rates, Geochemical Society, Houston. Special Publications, 7, 97 Böttcher, 2000, Biogeochemistry of sulfur in a sediment core from the West-Central Baltic Sea: evidence from stable isotopes and pyrite textures, J. Mar. Syst., 25, 299, 10.1016/S0924-7963(00)00023-3 Böttcher M. E., Hetzel A., Brumsack H. J. and Schipper A. (2006) Sulfur–iron–carbon geochemistry in sediments of the Demerara Rise. In: Proceedings ODP Scientific Results, vol. 207, pp. 1–23. Boudreau, 1997 Boudreau, 1991, On a reactive continuum representation of organic matter diagensesis, Am. J. Sci., 291, 507, 10.2475/ajs.291.5.507 Bréhéret, 2000, Barite concretions as evidences of pauses in sedimentation in the Marnes Bleues formation of the Vocontian Basin (SE France), Sediment. Geol., 130, 205, 10.1016/S0037-0738(99)00112-8 Brumsack H.-J. (1986) The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: North Atlantic Paleoceanography (eds. C. P. Summerhayes and N. J. Shackleton). Geol. Soc. Spec. Publ., vol. 21, pp. 447–462. Brumsack, 2006, The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 344, 10.1016/j.palaeo.2005.05.011 Burdige, 2007, Preservation of organic matter in marine sediments: controls, mechanisms and an imbalance in sediment organic carbon budgets?, Chem. Rev., 107, 467, 10.1021/cr050347q Canfield, 1994, Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315, 10.1016/0009-2541(94)90061-2 Canfield, 2001, Isotope fractionation by natural populations of sulfate-reducing bacteria, Geochim. Cosmochim. Acta, 65, 1117, 10.1016/S0016-7037(00)00584-6 Carpenter, 1981, Decay of heterogeneous detritus: a general model, J. Theor. Biol., 89, 539, 10.1016/0022-5193(81)90026-6 Christy, 1993, The kinetics of barite dissolution and precipitation in water and sodium chloride brines at 44–85°C, Geochim. Cosmochim. Acta, 57, 2161, 10.1016/0016-7037(93)90557-D Coolen, 2002, Ongoing modification of mediterranean pleistocene sapropels mediated by prokaryotes, Science, 296, 2407, 10.1126/science.1071893 Dauwe, 1999, Linking diagenetic alteration of amino acids and bulk organic matter reactivity, Limnol. Oceanogr., 44, 1809, 10.4319/lo.1999.44.7.1809 Demaison, 1980, Anoxic environments and oil source bed genesis, AAPG Bull., 64, 1179 Dickens, 2001, Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir, Geochim. Cosmochim. Acta, 65, 529, 10.1016/S0016-7037(00)00556-1 Duan, 1992, The prediction of methane solubility in natural waters to high ionic strength from 0 to 250°C and from 0 to 1600bar, Geochim. Cosmochim. Acta, 56, 1451, 10.1016/0016-7037(92)90215-5 Emerson, S. R., 1985. Organic carbon preservation in marine sediments. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. AGU, Washington, DC, pp. 78–87. Emerson, 1988, Processes controlling the organic carbon content of open ocean sediments, Palaeoceanography, 3, 621, 10.1029/PA003i005p00621 Erbacher, 2001, Increased thermohaline stratification as a possible cause for an oceanic anoxic event in the Cretaceous period, Nature, 409, 325, 10.1038/35053041 Erbacher J., Mosher D. C. and Malone M. J. (2004) Proceedings ODP, Initial Reports, vol. 207. Ocean Drilling Program, College Station, Texas. Forster A., Sturt H., Meyers P. A. and Party L. S. S. (2004) Molecular biogeochemistry of Cretaceous black shales from the Demerara Rise: preliminary shipboard results from sites 1257 and 1258, ODP Leg 207. In: Proceedings ODP Scientific Results, vol. 207, pp. 1–23. Friedrich, 2006, Benthic foramineferal assemblages from Demerara Rise (ODP Leg 207, western tropical Atlantic): possible evidence for a progressive opening of the Equatorial Atlantic Gateway, Cretaceous Res., 27, 377, 10.1016/j.cretres.2005.07.006 Gieskes J., Gamo T. and Brumsack H. J. (1991) Chemical methods for interstitial waters of marine sediments, based on deep sea drill cores. In: Joides Resolution. ODP Technical Note 15, pp. 1–23. Hedges, 1995, Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81, 10.1016/0304-4203(95)00008-F Henrichs, 1987, Anaerobic mineralization of marine organic matter: rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiology, 5, 191, 10.1080/01490458709385971 Hetzel A., Brumsack H. J., Böttcher M. E. and Schnetger, B. (2006) Inorganic geochemical characteriziation of lithologic units recovered during ODP Leg 207 (Demerara Rise). In: Proceedings of the Ocean Drilling Program, Scientific Results (eds. D.C. Mosher, J. Erbacher, and M.J. Malone), vol. 207. College Station, TX (Ocean Drilling Program), pp. 1–37. Hetzel A., Böttcher M. E., Wortmann U. G. and Brumsack H. J. (in press) Palaeo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr. Palaeoclimatol. Palaeoecol. Ho, 1987, On apparent second-order kinetics, Amer. Inst. Chem. Eng. J., 33, 1050, 10.1002/aic.690330621 Horita, 2002, Chemical evolution of seawater during the Phanerozoic, Geochim. Cosmochim. Acta, 66, 3733, 10.1016/S0016-7037(01)00884-5 Ibach, 1982, Relationship between sedimentation rate and total organic carbon content in ancient marine sediments, AAPG Bull., 66, 170 Jansen, 1984, A simple method for calculating decomposition and accumulation of ‘young’ soil organic matter, Plant Soil, 76, 287, 10.1007/BF02205588 Jenkyns, 1980, Cretaceous anoxic events: from continents to oceans, J. Geol. Soc. Lond., 173, 171, 10.1144/gsjgs.137.2.0171 Jørgensen, 2004, Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments, Geochim. Cosmochim. Acta, 68, 2095, 10.1016/j.gca.2003.07.017 Junium, 2007, Nitrogen cycling during the Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event II, Geochem. Geophys. Geosyst., 8, Q03002, 10.1029/2006GC001328 Kolonic, 2002, Geochemical characterization of Cenomanian/Turonian black shales from the Tarfaya basin (SW Morocco), J. Petrol. Geol., 25, 325, 10.1111/j.1747-5457.2002.tb00012.x Kolonic, 2005, Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: climate coupling and global organic carbon burial, Paleoceanography, 20, PA1006, 10.1029/2003PA000950 Krumholz, 1997, Confined subsurface microbial communities in Cretaceous rocks, Nature, 386, 64, 10.1038/386064a0 Krumholz, 2002, Anaerobic microbial growth from components of Cretaceous shales, Geomicrobiology, 19, 593, 10.1080/01490450290098559 Kuypers, 2002, Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, 17, 1, 10.1029/2000PA000569 Loewenstein, 2001, Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusion, Science, 294, 1086, 10.1126/science.1064280 Lyons, 2003, Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 195, 131, 10.1016/S0009-2541(02)00392-3 Meyers, 2007, Production and preservation of organic matter: the significance of iron, Paleoceanography, 22, PA4211, 10.1029/2006PA001332 Meyers, 2001, Integrated quantitative stratigraphy of the Cenomanian–Turonian Bridge Creek limestone member using evolutive harmonic analysis and stratigraphic modeling, J. Sediment. Res., 71, 627, 10.1306/012401710628 Meyers P. A., Forster A., Sturt H. and the Leg 207 Shipboard Scientific Party (2004) Microbial gases in black shale sequences on the Demrara Rise. In: Proceedings ODP Initial Report, vol. 207, pp. 1–23. Meyers, 2005, Organic carbon burial rate and the molybdenum proxy: theoretical framework and application to Cenomanian–Turonian OAE II, Paleoceanography, 20, 2002, 10.1029/2004PA001068 Meyers, 2006, Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin, Org. Geochem., 37, 1816, 10.1016/j.orggeochem.2006.08.009 Middelburg, 1989, A simple rate model for organic matter decomposition in marine sediments, Geochim. Cosmochim. Acta, 33, 1577, 10.1016/0016-7037(89)90239-1 Middelburg, 1991, Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia, Geochim. Cosmochim. Acta, 55, 815, 10.1016/0016-7037(91)90344-5 Moodley, 2005, Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon-rich deposits, Geology, 33, 889, 10.1130/G21731.1 Murray, 1990, Organic matter diagenesis in the north-east Pacific, transition from aerobic clay to suboxic hemipelagic sediments, Deep-Sea Res., 37, 59, 10.1016/0198-0149(90)90029-U Passier, 1996, Diagenetic pyritization under eastern Mediterranean Sapropels caused by downward sulphide diffusion, Geochim. Cosmochim. Acta, 60, 751, 10.1016/0016-7037(95)00419-X Pederson, 1990, Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?, AAPG Bull., 74, 454 Reimers, 1983, The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean, Mar. Chem., 13, 141, 10.1016/0304-4203(83)90022-1 Robin, 2003, Direct barite determination using SEM/EDS-ACC system: implication for constraining barium carriers and barite preservation in marine sediments, Mar. Chem., 82, 289, 10.1016/S0304-4203(03)00075-6 Rushdi, 2000, Marine barite and celestite saturation in seawater, Mar. Chem., 69, 19, 10.1016/S0304-4203(99)00089-4 Sageman, 2003, A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, middle–upper Devonian, Appalachian Basin, Chem. Geol., 195, 229, 10.1016/S0009-2541(02)00397-2 Schenau, 2001, Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments, Geochim. Cosmochim. Acta, 65, 1545, 10.1016/S0016-7037(01)00547-6 Schlanger, 1976, Cretaceous anoxic events: causes and consequences, Geol. Mijnbouw, 55, 179 Sinninghe Damsté, 1990, Analysis structure and geochemical significance of organically bound sulfur in the geosphere: state of the art and future research, Org. Geochem., 16, 1077, 10.1016/0146-6380(90)90145-P Sinninghe Damsté, 1998, Sulfurized carbohydrates: an important sedimentary sink for organic carbon, Earth Planet. Sci. Lett., 164, 7, 10.1016/S0012-821X(98)00234-9 Stein, 1986, Accumulation of organic-carbon-rich sediments in the late Jurassic and Cretaceous Atlantic—a synthesis, Chem. Geol., 56, 1, 10.1016/0009-2541(86)90107-5 Suess, 1980, Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization, Nature, 288, 260, 10.1038/288260a0 Tarutis, 1993, On the equivalence of the power and reactive continuum models of organic matter diagenesis, Geochim. Cosmochim. Acta, 57, 1349, 10.1016/0016-7037(93)90071-4 Toth, 1977, Organic matter reactivity and sedimentation rates in the ocean, Am. J. Sci., 277, 465, 10.2475/ajs.277.4.465 Treude, 2003, Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean, Mar. Ecol. Prog. Ser., 264, 1, 10.3354/meps264001 Tromp, 1995, A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments, Geochim. Cosmochim. Acta, 59, 1259, 10.1016/0016-7037(95)00042-X Tyson, 2001, Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modeling study, Org. Geochem., 32, 333, 10.1016/S0146-6380(00)00161-3 Tyson R.V. and Pearson T. H. (1991) Modern and ancient continental shelf anoxia: an overview. In: Modern and Ancient Continental Shelf Anoxia. Geological Society, London, pp. 1–24. Van Cappellen, 1996, Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese, Am. J. Sci., 296, 197, 10.2475/ajs.296.3.197 Van Mooy, 2002, Impact of suboxia on sinking particulate organic carbon: enhanced carbon flux and preferential degradation of amino acids via denitrification, Geochim. Cosmochim. Acta, 66, 457, 10.1016/S0016-7037(01)00787-6 van Os, 1991, Possible diagenetic mobilization of barium in sapropelic sediment from the eastern Mediterranean, Mar. Geol., 100, 125, 10.1016/0025-3227(91)90229-W Wagner, 2004, Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of black shales, Paleoceanography, 19, PA3009, 10.1029/2003PA000898 Walllmann, 2006, Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments, Geochim. Cosmochim. Acta, 70, 3905, 10.1016/j.gca.2006.06.003 Westrich, 1984, The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested, Limnol. Oceanogr., 29, 236, 10.4319/lo.1984.29.2.0236 Wilson, 2001, Warm tropical ocean surface and global anoxia during the mid-Cretaceous period, Nature, 412, 425, 10.1038/35086553