Graptolite-derived organic matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation

International Journal of Coal Geology - Tập 153 - Trang 87-98 - 2016
Qingyong Luo1, Ningning Zhong1, Na Dai1, Wang Zhang2
1State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
2State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing 102249, China

Tài liệu tham khảo

Bertrand, 1990, Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts, Org. Geochem., 15, 565, 10.1016/0146-6380(90)90102-6 Bertrand, 1987, Chitinozoan, graptolite, and scolecodont reflectance as an alternative to vitrinite and pyrobitumen reflectance in Ordovician and Silurian strata, Anticosti Island, Quebec, Canada, AAPG Bull., 71, 951 Brown, 1961, Some remarkable Antarctic coals, Fuel, 40, 211 Bustin, 1989, Optical properties and chemistry of graptolite periderm following laboratory simulated maturation, Org. Geochem., 14, 355, 10.1016/0146-6380(89)90001-6 Cao, 2015, Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China, Mar. Pet. Geol., 61, 140, 10.1016/j.marpetgeo.2014.12.007 Chalmers, 2012, AAPG Bull., 96, 1099, 10.1306/10171111052 Chandra, 1963, Reflectance of thermally metamorphosed coals, Fuel, 42, 69 Chen, 2000, Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation, Geol. Mag., 137, 623, 10.1017/S0016756800004702 Chen, 2004, Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition, Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 353, 10.1016/S0031-0182(03)00736-3 Chen, 2005, Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China, J. Paleontol., 79, 824 Chen, 2011, Shale gas reservoir characterisation: a typical case in the southern Sichuan Basin of China, Energy, 36, 6609, 10.1016/j.energy.2011.09.001 Clarkson, 2013, Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, 103, 606, 10.1016/j.fuel.2012.06.119 Clausen, 1982, Die Bedeutung der Graptolithenfragmente im Paläozoikum von Soest-Erwitte für Stratigraphie und Inkohlung, Fortschr. Geol. Rheinl. Westfalen, 30, 145 Cook, 1972, Optically biaxial anthracitic vitrinites, Fuel, 51, 180, 10.1016/0016-2361(72)90076-2 Curtis, 2002, Fractured shale-gas systems, AAPG Bull., 86, 1921 Curtis, 2012, Development of organic porosity in the Woodford Shale with increasing thermal maturity, Int. J. Coal Geol., 103, 26, 10.1016/j.coal.2012.08.004 Dai, 2014, Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin, Org. Geochem., 74, 3, 10.1016/j.orggeochem.2014.01.018 Dong, 2010, Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China, Oil Gas Geol., 31, 288 Fishman, 2012, The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom, Int. J. Coal Geol., 103, 32, 10.1016/j.coal.2012.07.012 Goodarzi, 1984, Organic petrography of graptolite fragments from Turkey, Mar. Pet. Geol., 1, 202, 10.1016/0264-8172(84)90146-6 Goodarzi, 1985, Dispersion of optical properties of graptolite epiderms with increased maturity in early Paleozoic organic sediments, Fuel, 64, 1735, 10.1016/0016-2361(85)90401-6 Goodarzi, 1985, Graptolites as indicators of the temperature histories of rocks, J. Geol. Soc. Lond., 142, 1089, 10.1144/gsjgs.142.6.1089 Goodarzi, 1987, Optical properties of graptolite epiderm—a review, Bull. Geol. Soc. Den., 35, 141 Goodarzi, 1989, Variation of graptolite reflectance with depth of burial, Int. J. Coal Geol., 11, 127, 10.1016/0166-5162(89)90002-5 Goodarzi, 1992, The significance of graptolite reflectance in regional thermal maturity studies, Queen Elizabeth Islands, Arctic Canada, Org. Geochem., 18, 347, 10.1016/0146-6380(92)90075-9 Guo, 2014, Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin, Pet. Explor. Dev., 41, 31, 10.1016/S1876-3804(14)60003-3 Hackley, 2012, Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas: a future shale gas resource?, AAPG Bull., 96, 1449, 10.1306/11221111071 Jarvie, 2007, Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment, AAPG Bull., 91, 475, 10.1306/12190606068 Khavari-Khorasani, 1975 Kinley, 2008, Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico, AAPG Bull., 92, 967, 10.1306/03240807121 Kurylowicz, 1976, Reservoir and source rock potential of the Larapinta Group, Amadeus Basin, central Australia, Austr. Petrol. Explor. Assoc. J., 16, 49 Li, 2010, Exploration prospects of shale gas of Upper Sinian–Silurian in mid-Yangtze region, Xinjiang Pet. Geol., 6, 659 Liang, 2009, Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (part 2): geochemical characteristics of four suits of regional marine source rocks, south China, Mar. Origin Pet. Geol., 14, 1 Liu, 2011, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China, Acta Petrol. Sin., 27, 2239 Loucks, 2009, Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale, J. Sediment. Res., 79, 848, 10.2110/jsr.2009.092 Loucks, 2012, Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores, AAPG Bull., 96, 1071, 10.1306/08171111061 Ma, 2015, Pore structure of two organic-rich shales in southeastern chongqing area: insight from Focused Ion Beam Scanning Electron Microscope (FIB-SEM), Pet. Geol. Exp., 37, 109 Mastalerz, 2013, Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion, AAPG Bull., 97, 1621, 10.1306/04011312194 Milliken, 2013, Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania, AAPG Bull., 97, 177, 10.1306/07231212048 Mu, 1981, Paleogeographic maps of the Late Ordovician in the Central China region and their explanation, J. Stratigr., 5, 165 Mu, 2011, Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze Region and petroleum and gas exploration, Acta Geol. Sin., 85, 526 Nie, 2012, Shale gas accumulation conditions of the Upper Ordovician–Lower Silurian in Sichuan Basin and its periphery, Oil Gas Geol., 33, 335 Passey, 2010, From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale-gas reservoirs, 29 Petersen, 2013, Reflectance measurements of zooclasts and solid bitumen in Lower Palaeozoic shales, southern Scandinavia: correlation to vitrinite reflectance, Int. J. Coal Geol., 114, 1, 10.1016/j.coal.2013.03.013 Rantitsch, 1995, Coalification and graphitization of graptolites in the anchizone and lower epizone, Int. J. Coal Geol., 27, 1, 10.1016/0166-5162(94)00017-T Riediger, 1989, Graptolites as indicators of regional maturity in lower Paleozoic sediments, Selwyn Basin, Yukon and Northwest Territories, Canada, Can. J. Earth Sci., 26, 2003, 10.1139/e89-169 Schmitz, 2008, Asteroid breakup linked to the Great Ordovician biodiversification event, Nat. Geosci., 1, 49, 10.1038/ngeo.2007.37 Sepkoski, 1995, The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data, 393 Sheehan, 2001, The late Ordovician mass extinction, Annu. Rev. Earth Planet. Sci., 29, 331, 10.1146/annurev.earth.29.1.331 Slatt, 2011, Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks, AAPG Bull., 95, 2017, 10.1306/03301110145 Teichmüller, 1978, Nachweis von graptolithen-periderm in geschieferten gesteinen mit hilfe kohlenpetrologischer methoden, Neues Jb. Geol. Paläontol. Monat., 7, 430 Teichmüller, 1982, The geological basis of coal formation, 5 Teichmüller, 1979, Inkohlung und Erdgas in Nordwestdeutschland. Eine Inkohlungskarte der oberfläche des oberkarbons, Fortschr. Geol. Rheinl. Westfalen, 27, 137 Teng, 2006, High-quality source rocks in the Lower Combination in Southeast Upper-Yangtze area and their hydrocarbon generating potential, Pet. Geol. Exp., 28, 359 Tian, 2013, A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods, Mar. Pet. Geol., 48, 8, 10.1016/j.marpetgeo.2013.07.008 Wang, 2009, Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region, Nat. Gas Ind., 29, 45 Zhai, 1987 Zhang, 1999 Zhang, 2015, The discovery and commercial development of Fuling shale gas field: a strategic breakthrough of China shale gas development, Int. Pet. Econ., 1, 29 Zhong, 1995 Zhu, 2010, The effect of Emeishan supper mantle plume to the thermal evolution of source rocks in the Sichuan Basin, Chin. J. Geophys. (in Chinese), 53, 119 Zhu, 2010, Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin, Chin. Sci. Bull., 55, 949, 10.1007/s11434-009-0490-y Zhu, 2010, The geologic background of the Silurian shale-gas reservoiring in Sichuan, China, J. China Coal Soc., 35, 1160 Zhu, 2015, The thermal history of the Sichuan Basin, SW China: evidence from the deep boreholes, Sci. China Earth Sci., 1 Zou, 2010, Geological characteristics and resource potential of shale gas in China, Pet. Explor. Dev., 37, 641, 10.1016/S1876-3804(11)60001-3 Zou, 2011, Conditions of shale gas accumulation and exploration practices in China, Nat. Gas Ind., 31, 26 Zou, 2012, Nano-hydrocarbon and the accumulation in coexisting source and reservoir, Pet. Explor. Dev., 39, 13, 10.1016/S1876-3804(12)60011-1