Superselection Rules for Philosophers

John Earman1
1Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aharonov, Y., & Susskind, L. (1967a). Charge superselection rule. Physical Review, 155, 1428–1431.

Aharonov, Y., & Susskind, L. (1967b). Observability of the sign change of spinors under 2π rotations. Physical Review, 158, 1237–1238.

Araki, H. (1999). Mathematical theory of quantum fields. Oxford: Oxford University Press.

Baez, J. C., Segal, I. E., & Zhou, Z. (1992). Introduction to algebraic and constructive quantum field theory. Princeton, NJ: Princeton University Press.

Bargmann, V. (1964). Note on Wigner’s theorem on symmetry operations. Journal of Mathematical Physics, 5, 862–868.

Bartlett, S. D., Rudolf, T., & Spekkens, R. W. (2006). Dialogue concerning two views on quantum coherence: Fascist and fictionalist. International Journal of Quantum Information, 4, 17–43.

Bartlett, S. D., Rudolf, T., & Spekkens, R. W. (2007). Reference frames, superselection rules, and quantum information. Reviews of Modern Physics, 79, 555–609.

Bartlett, S. D., & Wiseman, H. M. (2003). Entanglement constrained by superselection rules. Physical Review Letters, 91, 097903-1-4.

Beltrametti, E. G., & Cassinelli, G. (1981). The logic of quantum mechanics. Reading, MA: W. A. Benjamin.

Bogolubov, N. N., Logunov, A. A., & Todorov, I. T. (1975). Introduction to axiomatic quantum field theory. Reading, MA: W. A. Benjamin.

Bohm, D. (1951). Quantum theory. Englewood-Cliffs, NJ: Prentice-Hall.

Bratelli, O., & Robinson, D. W. (1987). Operator algebras and quantum statistical mechanics 1 (2nd ed.). New York: Springer.

Bub, J. (1988). How to solve the measurement problem in quantum mechanics. Foundations of Physics, 18, 701–722.

Bub, J. (1997). Interpreting the quantum world. Cambridge: Cambridge University Press.

Cisneros, R. P., Martínez-y-Romero, Núñez-Yépez, H. N., & Salas-Brito, A. L. (1998). Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics. European Journal of Physics, 19, 237–243.

Colin, S., Durt, T., & Tumulka, R. (2006). On superselection rules in Bohm-Bell theories. Journal of Physics A, 39, 15403–15419.

d’Espagnat, B. (1976). Conceptual foundations of quantum mechanics (2nd ed.). Reading, MA: W. A. Benjamin.

Divakaran, P. P. (1994). Symmetries and quantization: Structure of the state space. Reviews in Mathematical Physics, 6, 167–205.

Doplicher, S., Haag, R., & Roberts, J. E. (1971). Local observables and particle statistics. I. Communications in Mathematical Physics, 23, 199–230.

Doplicher, S., Haag, R., & Roberts, J. E. (1974). Local observables and particle statistics. I. Communications in Mathematical Physics, 35, 49–85.

Earman, J., & Ruetsche, L. (2007). Probabilities in quantum field theory and quantum statistical mechanics. pre-print.

Emch, G. (1972). Algebraic methods in statistical mechanics and quantum field theory. New York: Wiley.

Emch, G., & Piron, C. (1963). Symmetry in quantum theory. Journal of Mathematical Physics, 4, 469–473.

Galindo, A., Morales, A., & Nuñez-Logos, R. (1962). Superselection principle and pure states of n identical particles. Journal of Mathematical Physics, 3, 324–328.

Giulini, D. (1996). Galilei invariance in quantum mechanics. Annals of Physics, 249, 222–235.

Giulini, D. (2003). Superselection rules and symmetries. In E. Joos et al. (Eds.), Decoherence and the appearance of a classical world in quantum theory (2nd ed., pp. 259–315). Berlin: Springer.

Giulini, D., Kiefer, C., & Zeh, D. H. (1995). Symmetries, superselection rules, and decoherence. Physics Letters A, 199, 291–298.

Haag, R., & Kastler, J. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5, 848–861.

Halvorson, H. (2007). Algebraic quantum field theory. In J. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science. Philosophy of physics (pp.731–922). Amsterdam: Elsevier/North Holland.

Hamhalter, J. (2003). Quantum measure theory. Dordecht: Kluwer Academic.

Hartle, J. B., & Taylor, J. R. (1969). Quantum mechanics of paraparticles. Physical Review, 178, 2043–2051.

Hegerfeldt, G. C., & Kraus, K. (1968). Critical remark on the observability of the sign change of spinors under 2π rotations. Physical Review, 170, 1185–1186.

Hegerfeldt, G. C., Kraus, K., & Wigner, E. P. (1968). Proof of the Fermion superselection rule without the assumption of time-reversal invariance. Journal of Mathematical Physics, 9, 2029–2031.

Henneaux, M., & Teitelboim, C. (1992). Quantization of gauge theories. Princeton: Princeton University Press.

Hepp, K. (1972). Quantum theory of measurement and macroscopic observables. Helvetica Physica Acta, 45, 237–248.

Horuzhy, S. S. (1975). Superposition principle in algebraic quantum field theory. Theoretical and Mathematical Physics, 23, 413–421.

Hughes, R. I. G. (1989). The structure and interpretation of quantum mechanics. Cambridge, MA: Harvard University Press.

Jauch, J. M. (1960). Systems of observables in quantum mechanics. Helvetica Physica Acta, 33, 711–726.

Jauch, J. M., & Misra, B. (1961). Supersymmetries and essential observables. Helvetica Physica Acta, 34, 699–709.

Kadison, R. V., & Ringrose, J. R. (1991). Fundamentals of the theory of operator algebras, Vols. I and II. Providence, RI: American Mathematical Society.

Kaempffer, F. A. (1965). Concepts in quantum mechanics. New York: Academic Press.

Kastler, D. (Ed.) (1990). The algebraic theory of superselection sectors: Introduction and recent results. In Proceedings of the Convegno Internationale Algebraic Theory of Superselection Sectors and Field Theory. Singapore: World Scientific.

Klein, A. G., & Opat, I. (1976). Observation of 2π rotations by Fresnel diffraction of neutrons. Physical Review Letters, 37, 238–240.

Landsman, N. P. (1991). Algebraic theory of superselection sectors and the measurement problem in quantum mechanics. International Journal of Theoretical Physics A, 30, 5349–5371.

Landsman, N. P. (1995). Observation and superselection in quantum mechanics. Studies in History and Philosophy of Modern Physics, 26, 45–73.

Landsman, N. P. (2007). Between classical and quantum. In J. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science. Philosophy of physics (pp. 417–553). Amsterdam: Elsevier/North-Holland.

Lubkin, E. (1970). On violation of the superselection rules. Annals of Physics, 56, 69–80.

Mackey, G. W. (1998). The relationship between classical mechanics and quantum mechanics. In L. A. Coburn & M. A. Rieffel (Eds.), Perspectives on quantization (pp. 91–109). Providence, RI: American Mathematical Society.

Messiah, A. (1962). Quantum mechanics (Vol. 2). New York: Wiley.

Mirman, R. (1969). Coherent superposition of charge states. Physical Review, 186, 1380–1383.

Mirman, R. (1970). Analysis of the experimental meaning of coherent superposition and the nonexistence of superselection rules. Physical Review D, 1, 3349–3363.

Mirman, R. (1979). Nonexistence of superselection rules: Definition of the term frame of reference. Foundations of Physics, 9, 283–299.

Orear, J., Rosenfeld, A. H., & Schulter, R. A. (Eds.) (1951). Nuclear physics and the physics of fundamental particles; Proceedings. Chicago: Institute for Nuclear Studies.

Piron, C. (1969). Les régles de superséletion continues. Helvetica Physica Acta, 42, 330–338.

Piron, C. (1976). Foundations of quantum physics. Reading, MA: W. A. Benjamin.

Reed, M., & Simon, B. (1975). Methods of mathematical physics (Vol. 2). New York: Academic Press.

Reed, M., & Simon, B. (1980). Methods of mathematical physics (Vol. 1). New York: Academic Press (revised edition).

Roberts, J. E., & Roepstorff, G. (1969). Some basic concepts of algebraic quantum theory. Communications in Mathematical Physics, 11, 321–338.

Robinson, D. (1990). The infinite apparatus in the quantum theory of measurement. In A. Fine, M. Forbes & L. Wessels (Eds.), PSA 1990 (Vol. 1, pp. 251–261). East Lansing, MI: Philosophy of Science Association.

Robinson, D. (1994). Can superselection rules solve the measurement problem? British Journal for the Philosophy of Science, 45, 79–93.

Rolnick, W. B. (1967). Does charge obey a superselection rule? Physical Review Letters, 19, 717–718.

Roman, P. (1965). Advanced quantum theory. Reading, MA: Addison-Wesley.

Sewell, G. L. (2002). Quantum mechanics and its emergent macrophysics. Princeton, NJ: Princeton University Press.

Streater, R. F., & Wightman, A. S. (1964). PCT, spin and statistics, and all that. New York: W. A. Benjamin.

Strocchi, F., & Wightman, A. S. (1974). Proof of the charge superselection rule in local relativistic quantum field theory. Journal of Mathematical Physics, 15, 2198–2224.

Thalos, M. (1998). The trouble with superselection accounts of measurement. Philosophy of Science, 65, 518–544.

van Fraassen, B. C. (1991). Quantum mechanics: An empiricist approach. Oxford: Clarendon Press.

Vermaas, P. E. (1999). A philosopher’s understanding of quantum mechanics: Possibilities and impossibilities of a modal interpretation. Cambridge: Cambridge University Press.

Verstraete, F., & Cirac, J. I. (2003). Quantum nonlocality in the presence of superselection rules and data hiding protocols. Physical Review Letters, 91, 010404–14.

von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

Wald, R. M. (1994). Quantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press.

Wan, K.-K. (1980). Superselection rules, quantum measurement, and Schrödinger’s cat. Canadian Journal of Physics, 58, 976–982.

Weingard, R., & Smith, G. (1982). Spin and space. Synthese, 50, 313–331.

Werner, S. A., Colella, R., Overhauser, A. W., & Eagen, C. F. (1975). Observation of the phase shift of a neutron due to precession in a magnetic field. Physical Review Letters, 35, 1050–1055.

Wick, G. C., Wightman, A. S., & Wigner, E. P. (1952). The intrinsic parity of elementary particles. Physical Review, 88, 101–105.

Wick, G. C., Wightman, A. S., & Wigner, E. P. (1970). Superselection rule for charge. Physical Review D, 1, 3267–3269.

Wightman, A. S. (1959). Relativistic invariance and quantum mechanics. Nuovo Cimento, 14(supplemento), 81–94.

Wightman, A. S. (1995). Superselection rules; Old and new. Nuovo Cimento B, 110(N. 5-6), 751–769.

Wightman, A. S., & Glance, N. (1989). Superselection rules in molecules. Nuclear Physics B (Proc. Suppl.), 6, 202–206.

Wigner, E. P. (1931). Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Braunsweig: Friedrich Vieweg.

Wigner, E. P. (1973). Epistemological perspective on quantum theory. In C. A. Hooker (Ed.), Contemporary research in the foundations and philosophy of quantum theory (pp. 369–385). Dordrecht: D. Reidel.

Zurek, W. H. (1982). Environment induced superselection rules. Physical Review D, 26, 1862–1880.