Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary's freshwater delta

William V. Sobczak1, James E. Cloern1, Alan D. Jassby2, Brian E. Cole1, Tara S. Schraga1, Andrew Arnsberg1
1U.S. Geological Survey, Menlo Park
2Department of Environmental Science and Policy, University of California, Davis

Tóm tắt

Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that de tritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production.

Từ khóa


Tài liệu tham khảo

Bennett, W. A. andP. B. Moyle. 1996. Where have all the fish gone? Interactive factors producing fish declines in the Sacramento-San Joaquin estuary, p. 519–542.In J. T. Hollibaugh (ed.), San Francisco Bay: The Estuary. Pacific Division. American Association of the Advancement of Science, San Francisco, California. Boyer, J. N., J. W. Fourqurean, andR. D. Jones. 1999. Seasonal and long-term trends in water quality of Florida Bay (1989–97).Estuaries 22:417–430. Boyer, J. N. andR. D. Jones. 2001. A view from the bridge: External and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary, p. 601–620.In J. W. Porter and K. G. Porter (eds.), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, Florida. Brett, M. T. andD. C. Müller-Navarra. 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes.Freshwater Biology 38:483–499. Chanton, J. andF. G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, USA.Limnology and Oceanography 47:683–697. Cloern, J. E. 1999. The relative importance of light and nutrient limitation of phytoplankton growth: A simple index of coastal ecosystem sensitivity to nutrient enrichment.Aquatic Ecology 33:3–16. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253. Cloern, J. E., E. A. Canuel, andD. Harris. 2002. Stable-isotopes of C and N in aquatic and terrestrial plants of the San Francisco estuarine system.Limnology and Oceanography 47: 713–729. Cloern, J. E., C. Grenz, andL. V. Lucas. 1995. An empirical model of the phytoplankton chlorphyll: Carbon ratio—the conversion factor between productivity and growth rate.Limnology and Oceanography 40:1313–1321. Cole, J. J., S. R. Carpenter, J. F. Kitchell, andM. L. Pace. 2002. Pathways of organic C utilization in small lakes: Results from a whole-lake13C addition.Limnology and Oceanography 47: 1664–1675. Cummins, K. W. andM. J. Klug. 1979. Feeding ecology of stream invertebrates.Annual Review of Ecology and Systematics 10:147–172. Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47. del Giorgio, P. A. andJ. J. Cole. 1998. Bacterial growth efficiency in natural aquatic ecosystems.Annual Review of Ecology and Systematics 29:503–541. Ducklow, H. W., D. A. Purdie, P. J. Williams, andJ. M. Davies. 1986. Bacterioplankton: A sink for carbon in a coastal marine plankton community.Science 232:865–867. Findlay, S., J. M. Quinn, C. W. Hickey, G. Burrell, andM. Downes. 2001. Effects of land use and riparian flowpath on delivery of dissolved organic carbon to streams.Limnology and Oceanography 46:345–355. Findlay, S., R. L. Sinsabaugh, D. T. Fischer, andP. Franchini. 1998. Sources of dissolved organic carbon supporting planktonic bacterial production in the tidal freshwater Hudson River.Ecosystems 1:227–239. Hager, S. W. 1994. Dissolved nutrient and suspended matter data for the San Francisco Bay estuary, California, Oct 1991–Sept 1993. U.S. Geological Survey Open-File Report 94-471. San Francisco, California. Haines, E. B. 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh.Limnology and Oceanography 21:880–883. Hollibaugh, J. T. andP. S. Wong. 1996. Distribution and activity of bacterioplankton in San Francisco Bay, p. 263–288.In J. T. Hollibaugh (ed.), San Francisco Bay: The Estuary Pacific Division. American Association of the Advancement of Science, San Francisco, California. Jassby, A. D. andJ. E. Cloern. 2000. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, U.S.).Aquatic Conservations: Marine and Freshwater Ecosystems 10:323–352. Jassby, A. D., J. E. Cloern, andB. E. Cole. 2002. Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem.Limnology and Oceanography 47: 698–712. Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel, andT. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations.Ecological Applications 5:272–289. Kemp, W. M., E. M. Smith, M. Marvin-Dipasquale, andW. R. Boynton. 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay.Marine Ecology Progress Series 150:229–248. Leland, H. V., L. R. Brown, andD. K. Mueller. 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors.Freshwater Biology 46:1139–1167. Levin, S. A. 1992. The problem of pattern and scale in ecology.Ecology 73:1943–1967. Lewis, Jr.,W. M., S. K. Hamilton, M. A. Rodriguez, J. F. Saunders III, andM. A. Lasi. 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data.Journal of the North American Benthological Society 20: 241–254. Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology.Ecology 23:399–418. Lucas, L. V., J. E. Cloern, J. K. Thompson, andN. E. Monsen. 2002. Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications.Ecological Applications 12:1528–1547. Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems.Limnology and Oceanography 33:910–930. McCallister, S. L., J. E. Bauer, J. E. Cherrier, andH. W. Ducklow. 2004. Assessing sources and ages of organic matter supporting river and estuarine bacterial production: A multiple isotope (Δ14C, δ13C, and δ15N) approach.Limnology and Oceanography 49:1687–1702. Monsen, N. E. 2001. A study of sub-tidal transport in Suisun Bay and the Sacramento-San Joaquin Delta, California. Ph.D. Disseration, Stanford University, Stanford, California. Müller-Solger, A. B., A. D. Jassby, andD. C. Müller-Navarra. 2002. Nutritional quality of food resources for zooplankton (Daphnia) in a tidal freshwater system (Sacramento-San Joaquin River Delta, U.S.).Limnology and Oceanography 47:1468–1476. Murrell, M. C. andJ. T. Hollibaugh. 1998. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method.Aquatic Microbial Ecology 15:53–63. Murrell, M. C., R. S. Stanley, E. M. Lores, G. T. DiDonato, andD. A. Flemer. 2002. Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary.Estuaries 25:19–29. Peterson, B. J., R. W. Howarth, andR. H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow.Ecology 67:865–874. Polis, G. A., W. B. Anderson, andR. D. Holt. 1997. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs.Annual Review of Ecology and Systematics 28:289–316. Rabalais, N. N., R. E. Turner, andD. Scavia. 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River.BioScience 52:129–142. Raymond, P. A., J. E. Bauer, andJ. J. Cole. 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary.Limnology and Oceanography 45:1707–1717. Raymond, P. A., N. F. Caraco, andJ. J. Cole. 1997. Carbon dioxide concentration and atmosphere flux in the Hudson River.Estuaries 20:381–390. Reiners, W. A. andK. L. Driese. 2001. The propagation of ecological influences through heterogeneous environmental space.BioScience 51:939–950. Roff, J. C., J. T. Turner, M. K. Webber, andR. R. Hopcroft. 1995. Bacterivory by tropical copepod nauplii: Extent and possible significance.Aquatic Microbial Ecology 9:165–175. Sanders, R. W., D. A. Caron, andU. G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison.Marine Ecology Progress Series 86:1–14. Schemel, L. E., S. W. Hager, andD. Childers. 1996. The supply and carbon content of suspended sediment from the Sacramento River to San Francisco Bay, p. 237–260.In J. T. Hollibaugh (ed.), San Francisco Bay: The Estuary. Pacific Division. American Association of the Advancement of Science, San Francisco, California. Schemel, L. E., T. R. Sommer, A. B. Müller-Solger, andW. C. Harrell. 2003. Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain of the Sacramento River, California, U.S.Hydrobiologia 513:129–139. Smith, S. V. andJ. T. Hollibaugh. 1997. Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment.Ecological Monographs 67:509–533. Sobczak, W. V., J. E. Cloern, A. D. Jassby, andA. B. Müller-Solger. 2002. Bioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal resources.Proceedings of the National Academy of Sciences 99:8101–8105. Sommer, T. R., M. L. Nobriga, W. C. Harrell, W. Batham, andW. J. Kimmerer. 2001. Floodplain rearing of juvenile Chinook salmon: Evidence of enhanced growth and survival.Canadian Journal of Fisheries and Aquatic Sciences 58:325–333. Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia.Ecology 23:614–624. Vannote, R. L., G. W. Minshall, K. W. Cumming, J. R. Sedell, andC. E. Cushing. 1980. The river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences 37:130–137. Wallace, J. B., S. L. Eggert, J. L. Meyer, andJ. R. Webster. 1999. Effects of resource limitation on a detrital-based ecosystem.Ecological Monographs 69:409–442. Webster, J. R. and J. L. Meyer (eds.). 1997a. Stream organic matter budgets.Journal of the North American Benthological Society 16:3–161. Webster, J. R. and J. L. Meyer. 1997b Organic matter budgets for streams: A synthesis, p. 141–161.In J. R. Webster and J. L. Meyer (eds.), Stream Organic Matter Budgest.Journal of the North American Benthological Society 16:3–161. Wetzel, R. G. 2001. Limology: Lake and River Ecosystem, 3rd edition. Academic Press, San Diego, California. Wetzel, R. G., andG. E. Likens. 2000. Limnological Analyses, 3rd edition. Springer-Verlag, New York.