Modelling and analysis of a thermoacoustic-piezoelectric energy harvester
Tài liệu tham khảo
Mumith, 2014, Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing: a thermoacoustic device for heat recovery, Appl. Therm. Eng., 65, 588, 10.1016/j.applthermaleng.2014.01.042
De Blok, 2008, Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery, J. Acoust. Soc. Am., 123, 3546, 10.1121/1.2934526
Symko, 2004, Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics, Microelectronics J., 35, 185, 10.1016/j.mejo.2003.09.017
Jensen, 2010, Thermoacoustic power conversion using a piezoelectric transducer a, J. Acoust. Soc. Am., 128, 98, 10.1121/1.3409370
Swift, 2017
Swift, 1988, Thermoacoustic engines, J. Acoust. Soc. Am., 84, 1145, 10.1121/1.396617
Backhaus, 1999, A thermoacoustic Stirling heat engine, Nature, 399, 335, 10.1038/20624
Mason, 1981, Piezoelectricity, its history and applications, J. Acoust. Soc. Am., 70, 1561, 10.1121/1.387221
Sharify, 2017, Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine, Appl. Therm. Eng., 113, 791, 10.1016/j.applthermaleng.2016.11.021
Sharify, 2016, Development of a CFD model for simulation of a traveling-wave thermoacoustic engine using an impedance matching boundary condition, Appl. Therm. Eng., 107, 1026, 10.1016/j.applthermaleng.2016.07.028
Senga, 2016, Four-stage loop-type cascade traveling-wave thermoacoustic engine, Appl. Therm. Eng., 104, 258, 10.1016/j.applthermaleng.2016.05.013
Jin, 2016, Thermodynamic characteristics during the onset and damping processes in a looped thermoacoustic prime mover, Appl. Therm. Eng., 100, 1169, 10.1016/j.applthermaleng.2016.02.115
Hasegawa, 2013, A thermoacoustic refrigerator driven by a low temperature-differential, high-efficiency multistage thermoacoustic engine, Appl. Therm. Eng., 58, 394, 10.1016/j.applthermaleng.2013.04.030
Sun, 2009, Novel Helmholtz resonator used to focus acoustic energy of thermoacoustic engine, Appl. Therm. Eng., 29, 945, 10.1016/j.applthermaleng.2008.05.004
Kruse, 2017, A numerical study of a looped-tube thermoacoustic engine with a single-stage for utilization of low-grade heat, Energy Convers. Manage., 149, 206, 10.1016/j.enconman.2017.07.010
Ceperley, 1979, A pistonless Stirling engine—the traveling wave heat engine, J. Acoust. Soc. Am., 66, 1508, 10.1121/1.383505
Gedeon, 1997, 385
Smoker, 2012, Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator, J. Appl. Phys., 111, 104901, 10.1063/1.4712630
Nouh, 2014, Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters, J. Acoust. Soc. Am., 135, 669, 10.1121/1.4861236
Nouh, 2014, Theoretical modeling and experimental realization of dynamically magnified thermoacoustic-piezoelectric energy harvesters, J. Sound Vib., 333, 3138, 10.1016/j.jsv.2014.02.016
Chen, 2018, Theoretical and experimental investigation of the dynamic behaviour of a standing-wave thermoacoustic engine with various boundary conditions, Int. J. Heat Mass Transf., 123, 367, 10.1016/j.ijheatmasstransfer.2018.02.121
Merhaut, 1981
Liu, 2007, A multiple degree of freedom electromechanical Helmholtz resonator, J. Acoust. Soc. Am., 122, 291, 10.1121/1.2735116
Kinsler, 1999, Fundamentals of acoustics, 560
Rott, 1980, Thermoacoustics, Adv. Appl. Mech., 20, 135, 10.1016/S0065-2156(08)70233-3
Rott, 1969, Damped and thermally driven acoustic oscillations in wide and narrow tubes, Zeitschrift für angewandte Mathematik und Physik ZAMP., 20, 230, 10.1007/BF01595562
Arnott, 1991, General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections, J. Acoust. Soc. Am., 90, 3228, 10.1121/1.401432
Swift, 1993, Thermoacoustics in pin-array stacks, J. Acoust. Soc. Am., 94, 941, 10.1121/1.408196
Wilen, 1998, Measurements of thermoacoustic functions for single pores, J. Acoust. Soc. Am., 103, 1406, 10.1121/1.421299
Roh, 2007, Parallel capillary-tube-based extension of thermoacoustic theory for random porous media, J. Acoust. Soc. Am., 121, 1413, 10.1121/1.2436632
Chapman, 1970
Tominaga, 1995, Thermodynamic aspects of thermoacoustic theory, Cryogenics, 35, 427, 10.1016/0011-2275(95)93576-L
Wang, 2015, Beating effect between a thermoacoustic source and its mechanical partner, J. Appl. Phys., 118, 244907, 10.1063/1.4939291
Vinson, 2012
S. Timoshenko, G.H. MacCullough. Elements of strength of materials, 1949.
Prasad, 2002