The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways
Tài liệu tham khảo
Potters, 1994, Statistical mechanics and visual signal processing, J. Phys. I France, 4, 1755, 10.1051/jp1:1994219
Fitzgerald, 2015, Nonlinear circuits for naturalistic visual motion estimation, eLife, 4, e09123, 10.7554/eLife.09123
Fitzgerald, 2011, Symmetries in stimulus statistics shape the form of visual motion estimators, Proc. Natl. Acad. Sci. USA, 108, 12909, 10.1073/pnas.1015680108
Borst, 2015, Common circuit design in fly and mammalian motion vision, Nat. Neurosci., 18, 1067, 10.1038/nn.4050
Clark, 2016, Parallel computations in insect and mammalian visual motion processing, Curr. Biol., 26, R1062, 10.1016/j.cub.2016.08.003
Hassenstein, 1956, Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus, Z. Naturforsch. B, 11, 513, 10.1515/znb-1956-9-1004
Anstis, 1970, Phi movement as a subtraction process, Vision Res., 10, 1411, 10.1016/0042-6989(70)90092-1
Orger, 2000, Perception of Fourier and non-Fourier motion by larval zebrafish, Nat. Neurosci., 3, 1128, 10.1038/80649
Livingstone, 2001, Two-dimensional substructure of MT receptive fields, Neuron, 30, 781, 10.1016/S0896-6273(01)00313-0
Bours, 2009, Sensitivity for reverse-phi motion, Vision Res., 49, 1, 10.1016/j.visres.2008.09.014
Clark, 2011, Defining the computational structure of the motion detector in Drosophila, Neuron, 70, 1165, 10.1016/j.neuron.2011.05.023
de Ruyter van Steveninck, R.R., Bialek, W., Potters, M., Carlson, R.H., and Lewen, G.D. (1994). Adaptive movement computation by the blowfly visual system. In Proceedings of the Fifth NEC Research Symposium. pp. 21–41.
Leong, 2016, Direction selectivity in Drosophila emerges from preferred-direction enhancement and null-direction suppression, J. Neurosci., 36, 8078, 10.1523/JNEUROSCI.1272-16.2016
Borst, 2018, A biophysical mechanism for preferred direction enhancement in fly motion vision, PLoS Comput. Biol., 14, e1006240, 10.1371/journal.pcbi.1006240
Barlow, 1965, The mechanism of directionally selective units in rabbit’s retina, J. Physiol., 178, 477, 10.1113/jphysiol.1965.sp007638
Livingstone, 2003, Substructure of direction-selective receptive fields in macaque V1, J. Neurophysiol., 89, 2743, 10.1152/jn.00822.2002
Eichner, 2011, Internal structure of the fly elementary motion detector, Neuron, 70, 1155, 10.1016/j.neuron.2011.03.028
Joesch, 2013, Functional specialization of parallel motion detection circuits in the fly, J. Neurosci., 33, 902, 10.1523/JNEUROSCI.3374-12.2013
Maisak, 2013, A directional tuning map of Drosophila elementary motion detectors, Nature, 500, 212, 10.1038/nature12320
Buchner, 1984, Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement, J. Comp. Physiol. A, 155, 471, 10.1007/BF00611912
Tuthill, 2011, Neural correlates of illusory motion perception in Drosophila, Proc. Natl. Acad. Sci. USA, 108, 9685, 10.1073/pnas.1100062108
Arenz, 2017, The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements, Curr. Biol., 27, 929, 10.1016/j.cub.2017.01.051
Strother, 2014, Direct observation of ON and OFF pathways in the Drosophila visual system, Curr. Biol., 24, 976, 10.1016/j.cub.2014.03.017
Behnia, 2014, Processing properties of ON and OFF pathways for Drosophila motion detection, Nature, 512, 427, 10.1038/nature13427
Freifeld, 2013, GABAergic lateral interactions tune the early stages of visual processing in Drosophila, Neuron, 78, 1075, 10.1016/j.neuron.2013.04.024
Takemura, 2017, The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila, eLife, 6, e24394, 10.7554/eLife.24394
Takemura, 2013, A visual motion detection circuit suggested by Drosophila connectomics, Nature, 500, 175, 10.1038/nature12450
Strother, 2017, The emergence of directional selectivity in the visual motion pathway of Drosophila, Neuron, 94, 168, 10.1016/j.neuron.2017.03.010
Wienecke, 2018, Linear summation underlies direction selectivity in Drosophila, Neuron, 99, 680, 10.1016/j.neuron.2018.07.005
Salazar-Gatzimas, 2016, Direct measurement of correlation responses in Drosophila elementary motion detectors reveals fast timescale tuning, Neuron, 92, 227, 10.1016/j.neuron.2016.09.017
Gruntman, 2018, Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila, Nat. Neurosci., 21, 250, 10.1038/s41593-017-0046-4
Schnell, 2012, Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila, J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 198, 389, 10.1007/s00359-012-0716-3
Schilling, 2015, Local motion detectors are required for the computation of expansion flow-fields, Biol. Open, 4, 1105, 10.1242/bio.012690
Kitamoto, 2001, Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons, J. Neurobiol., 47, 81, 10.1002/neu.1018
Chen, 2013, Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, 499, 295, 10.1038/nature12354
Mauss, 2015, Neural circuit to integrate opposing motions in the visual field, Cell, 162, 351, 10.1016/j.cell.2015.06.035
Shinomiya, 2014, Candidate neural substrates for off-edge motion detection in Drosophila, Curr. Biol., 24, 1062, 10.1016/j.cub.2014.03.051
Serbe, 2016, Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector, Neuron, 89, 829, 10.1016/j.neuron.2016.01.006
Marvin, 2013, An optimized fluorescent probe for visualizing glutamate neurotransmission, Nat. Methods, 10, 162, 10.1038/nmeth.2333
van Hateren, 1998, Independent component filters of natural images compared with simple cells in primary visual cortex, Proc. Biol. Sci., 265, 359, 10.1098/rspb.1998.0303
Poggio, 1973, Considerations on models of movement detection, Kybernetik, 13, 223, 10.1007/BF00274887
Clark, 2014, Flies and humans share a motion estimation strategy that exploits natural scene statistics, Nat. Neurosci., 17, 296, 10.1038/nn.3600
Leonhardt, 2016, Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation, Nat. Neurosci., 19, 706, 10.1038/nn.4262
Klapoetke, 2017, Ultra-selective looming detection from radial motion opponency, Nature, 551, 237, 10.1038/nature24626
Strother, 2018, Behavioral state modulates the ON visual motion pathway of Drosophila, Proc. Natl. Acad. Sci. USA, 115, E102, 10.1073/pnas.1703090115
Yang, 2016, Subcellular imaging of voltage and calcium signals reveals neural processing in vivo, Cell, 166, 245, 10.1016/j.cell.2016.05.031
Meyer, 2014
Katsov, 2008, Motion processing streams in Drosophila are behaviorally specialized, Neuron, 59, 322, 10.1016/j.neuron.2008.05.022
Haag, 2016, Complementary mechanisms create direction selectivity in the fly, eLife, 5, 5, 10.7554/eLife.17421
Fisher, 2015, Orientation selectivity sharpens motion detection in Drosophila, Neuron, 88, 390, 10.1016/j.neuron.2015.09.033
Ramdya, 2006, Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo, J. Neurosci. Methods, 157, 230, 10.1016/j.jneumeth.2006.04.021
Borst, 2010, Fly motion vision, Annu. Rev. Neurosci., 33, 49, 10.1146/annurev-neuro-060909-153155
Borst, 1989, Principles of visual motion detection, Trends Neurosci., 12, 297, 10.1016/0166-2236(89)90010-6
Haag, 2017, A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway, eLife, 6, e29044, 10.7554/eLife.29044
Koch, 2004
Leonhardt, 2017, Neural mechanisms underlying sensitivity to reverse-phi motion in the fly, PLoS ONE, 12, e0189019, 10.1371/journal.pone.0189019
Lee, 1999, Learning the parts of objects by non-negative matrix factorization, Nature, 401, 788, 10.1038/44565
Plumbley, M.D. (2001). Adaptive lateral inhibition for non-negative ICA. In Proceedings of the International Conference on Independent Component Analysis and Blind Signal Separation (ICA2001). pp. 516–521.
Pehlevan, C., and Chklovskii, D.B. (2014). A hebbian/anti-hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features. In Signals, Systems and Computers, 2014 48th Asilomar Conference (IEEE), pp. 769–775.
Pehlevan, 2017, Blind nonnegative source separation using biological neural networks, Neural Comput., 29, 2925, 10.1162/neco_a_01007
Sanes, 2010, Design principles of insect and vertebrate visual systems, Neuron, 66, 15, 10.1016/j.neuron.2010.01.018
Amthor, 1993, Inhibition in ON-OFF directionally selective ganglion cells of the rabbit retina, J. Neurophysiol., 69, 2174, 10.1152/jn.1993.69.6.2174
Grzywacz, 1993, Facilitation in ON-OFF directionally selective ganglion cells of the rabbit retina, J. Neurophysiol., 69, 2188, 10.1152/jn.1993.69.6.2188
Famiglietti, 1983, ‘Starburst’ amacrine cells and cholinergic neurons: Mirror-symmetric on and off amacrine cells of rabbit retina, Brain Res., 261, 138, 10.1016/0006-8993(83)91293-3
Fransen, 2017, Temporally diverse excitation generates direction-selective responses in ON- and OFF-type retinal starburst amacrine cells, Cell Rep., 18, 1356, 10.1016/j.celrep.2017.01.026
Mo, 2003, Modeling reverse-phi motion-selective neurons in cortex: Double synaptic-veto mechanism, Neural Comput., 15, 735, 10.1162/08997660360581886
Chalasani, 2007, Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans, Nature, 450, 63, 10.1038/nature06292
Gallio, 2011, The coding of temperature in the Drosophila brain, Cell, 144, 614, 10.1016/j.cell.2011.01.028
Matsuo, 2014, Identification of novel vibration- and deflection-sensitive neuronal subgroups in Johnston’s organ of the fruit fly, Front. Physiol., 5, 179, 10.3389/fphys.2014.00179
Mazor, 2005, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons, Neuron, 48, 661, 10.1016/j.neuron.2005.09.032
Scholl, 2010, Nonoverlapping sets of synapses drive on responses and off responses in auditory cortex, Neuron, 65, 412, 10.1016/j.neuron.2010.01.020
Gjorgjieva, 2014, Benefits of pathway splitting in sensory coding, J. Neurosci., 34, 12127, 10.1523/JNEUROSCI.1032-14.2014
Ratliff, 2010, Retina is structured to process an excess of darkness in natural scenes, Proc. Natl. Acad. Sci. USA, 107, 17368, 10.1073/pnas.1005846107
Simoncelli, 2001, Natural image statistics and neural representation, Annu. Rev. Neurosci., 24, 1193, 10.1146/annurev.neuro.24.1.1193
Dyakova, 2015, A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes, Nat. Commun., 6, 8522, 10.1038/ncomms9522
Field, 1993, Scale-invariance and self-similar ‘wavelet’ transforms: An analysis of natural scenes and mammalian visual systems, 151
Ruderman, 1994, Statistics of natural images: Scaling in the woods, Phys. Rev. Lett., 73, 814, 10.1103/PhysRevLett.73.814
Vinje, 2000, Sparse coding and decorrelation in primary visual cortex during natural vision, Science, 287, 1273, 10.1126/science.287.5456.1273
Nitzany, 2014, The statistics of local motion signals in naturalistic movies, J. Vis., 14
Srinivasan, 1982, Predictive coding: A fresh view of inhibition in the retina, Proc. R. Soc. Lond. B Biol. Sci., 216, 427, 10.1098/rspb.1982.0085
Atick, 1990, Towards a theory of early visual processing, Neural Comput., 2, 308, 10.1162/neco.1990.2.3.308
Bell, 1997, The “independent components” of natural scenes are edge filters, Vision Res., 37, 3327, 10.1016/S0042-6989(97)00121-1
Kastner, 2015, Critical and maximally informative encoding between neural populations in the retina, Proc. Natl. Acad. Sci. USA, 112, 2533, 10.1073/pnas.1418092112
Pitkow, 2012, Decorrelation and efficient coding by retinal ganglion cells, Nat. Neurosci., 15, 628, 10.1038/nn.3064
Simmons, 2013, Transformation of stimulus correlations by the retina, PLoS Comput. Biol., 9, e1003344, 10.1371/journal.pcbi.1003344
Westheimer, 2007, The ON-OFF dichotomy in visual processing: From receptors to perception, Prog. Retin. Eye Res., 26, 636, 10.1016/j.preteyeres.2007.07.003
Fiete, 2004, Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong, J. Neurophysiol., 92, 2274, 10.1152/jn.01133.2003
Nordström, 2006, Insect detection of small targets moving in visual clutter, PLoS Biol., 4, e54, 10.1371/journal.pbio.0040054
Keleş, 2017, Object-detecting neurons in Drosophila, Curr. Biol., 27, 680, 10.1016/j.cub.2017.01.012
Stork, 2014, Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes, Neuron, 83, 388, 10.1016/j.neuron.2014.06.026
Gohl, 2011, A versatile in vivo system for directed dissection of gene expression patterns, Nat. Methods, 8, 231, 10.1038/nmeth.1561
Brainard, 1997, The psychophysics toolbox, Spat. Vis., 10, 433, 10.1163/156856897X00357
Pologruto, 2003, ScanImage: Flexible software for operating laser scanning microscopes, Biomed. Eng. Online, 2, 13, 10.1186/1475-925X-2-13
Wilson, 2004, Transformation of olfactory representations in the Drosophila antennal lobe, Science, 303, 366, 10.1126/science.1090782
Mano, 2017, Graphics processing unit-accelerated code for computing second-order wiener kernels and spike-triggered covariance, PLoS ONE, 12, e0169842, 10.1371/journal.pone.0169842