Performance of transition metal-doped CaCO3 during cyclic CO2 capture-and-release in low-pressure H2O vapour and H2O plasma

Sustainable Materials and Technologies - Tập 25 - Trang e00163 - 2020
T.T. Belete1, M.C.M. van de Sanden1, M.A. Gleeson2
1DIFFER-Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
2DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands

Tài liệu tham khảo

Global CCS Vijayavenkataraman, 2012, A review of climate change, mitigation and adaptation, Renew. Sust. Energ. Rev., 16, 878, 10.1016/j.rser.2011.09.009 Boot-Handford, 2014, Carbon capture and storage update, Energy Environ. Sci., 7, 130, 10.1039/C3EE42350F Dieter, 2013, Progress in calcium looping post combustion CO2 capture: Successful pilot scale demonstration, Energy Procedia, 37, 48, 10.1016/j.egypro.2013.05.084 Broda, 2013, CO2 capture via cyclic calcination and carbonation reactions, 181 Hoeben, 2015, Plasma driven, water assisted CO2 methanation, IEEE Xplore, 43, 1 Mahammadunnisa, 2013, CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water, Int. J. Greenh. Gas Control, 16, 361, 10.1016/j.ijggc.2013.04.008 Kraus, 2002, Investigation of mechanistic aspects of the catalytic CO2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling, Phys. Chem. Chem. Phys., 4, 668, 10.1039/b108040g Werner, 2014, Flue gas CO2 mineralization using thermally activated serpentine: from single- to double-step carbonation, Energy Procedia, 63, 5912, 10.1016/j.egypro.2014.11.626 Sanna, 2014, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43, 8049, 10.1039/C4CS00035H Leung, 2014, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev., 39, 426, 10.1016/j.rser.2014.07.093 Dean, 2011, The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production, Chem. Eng. Res. Des., 89, 836, 10.1016/j.cherd.2010.10.013 Beruto, 1984, Thermodynamics and kinetics of carbon dioxide chemisorption on calcium oxide, J. Phys. Chem., 88, 4052, 10.1021/j150662a039 Diego, 2014, Calcium looping with enhanced sorbent performance: experimental testing in a large pilot plant, Energy Procedia, 63, 2060, 10.1016/j.egypro.2014.11.222 Romano, 2014, The calcium looping process for low CO2 emission cement plants, Energy Procedia, 61, 500, 10.1016/j.egypro.2014.11.1158 Erans, 2017, Operation of a 25 KWth calcium ooping pilot-plant with high oxygen concentrations in the calciner, J. Vis. Exp., 1 Blamey, 2010, The calcium looping cycle for large-scale CO2 capture, Prog. Energy Combust. Sci., 36, 260, 10.1016/j.pecs.2009.10.001 Borgwardt, 1989, Calcium oxide sintering in atmospheres containing water and carbon dioxide, Ind. Eng. Chem. Res., 28, 493, 10.1021/ie00088a019 Manovic, 2007, Steam reactivation of spent CaO based sorbent for multiple CO2 capture cycles, Environ. Sci. Technol., 41, 1420, 10.1021/es0621344 Manovic, 2008, Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles, Environ. Sci. Technol., 42, 4170, 10.1021/es800152s Manovic, 2008, CO2 looping cycle performance of a high-purity limestone after thermal activation/doping, Energy Fuel, 22, 3258, 10.1021/ef800316h Pawlak-Kruczek, 2017, Effectiveness of CO2 capture by calcium looping with regenerated calcium sorbents - last step calcination, Energy Procedia, 105, 4499, 10.1016/j.egypro.2017.03.962 Sun, 2008, Investigation of attempts to improve cyclic CO2 capture by sorbent hydration and modification, Ind. Eng. Chem. Res., 47, 2024, 10.1021/ie070335q González, 2011, Calcium looping for CO2 capture: sorbent enhancement through doping, Energy Procedia, 4, 402, 10.1016/j.egypro.2011.01.068 Manovic, 2008, Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent, Fuel, 87, 1564, 10.1016/j.fuel.2007.08.022 Donat, 2012, Influence of high-temperature steam on the reactivity of CaO sorbent for CO2 capture, Environ. Sci. Technol., 46, 1262, 10.1021/es202679w Hughes, 2004, Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor, Ind. Eng. Chem. Res., 43, 5529, 10.1021/ie034260b Blamey, 2012 Lu, 2009, Flame-made durable doped-CaO nanosorbents for CO2 capture, Energy Fuel, 23, 1093, 10.1021/ef8007882 Koirala, 2012, Single nozzle flame-made highly durable metal doped ca-based sorbents for CO2 capture at high temperature, Energy Fuel, 26, 3103, 10.1021/ef3004015 Salvador, 2003, Enhancement of CaO for CO2 capture in an FBC environment, Chem. Eng. J., 96, 187, 10.1016/j.cej.2003.08.011 Belete, 2019, Effects of transition metal dopants on the calcination of CaCO3 under Ar, H2O and H2, J. CO2 Util., 31, 152, 10.1016/j.jcou.2019.03.006 Wang, 1995, The effects of steam and carbon dioxide on calcite decomposition using dynamic X-ray-diffraction, Chem. Eng. Sci., 50, 1373, 10.1016/0009-2509(95)00002-M Boris, 1997, Mechanism of thermal decomposition of alkaline-earth carbonates, Thermochim. Acta, 303, 161, 10.1016/S0040-6031(97)00261-X Padeste, 1990, The influence of transition metals on the thermal decomposition of calcium carbonate in hydrogen, Mater. Res. Bull., 25, 1299, 10.1016/0025-5408(90)90088-J Reller, 1987, Formation of organic carbon compounds from metal carbonates, Nature, 329, 527, 10.1038/329527a0 Zeppenfeld, 2010, Prevention of CaCO3 scale formation by trace amounts of copper (II) in comparison to zinc (II), Desalination, 252, 60, 10.1016/j.desal.2009.10.025 Rodríguez-Carvajal, 1993, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Phys. Condens. Matter, 192, 55, 10.1016/0921-4526(93)90108-I Arias, 2011, An analysis of the effect of carbonation conditions on CaO deactivation curves, Chem. Eng. J., 167, 255, 10.1016/j.cej.2010.12.052 Manovic, 2010, Carbonation of CaO-based sorbents enhanced by steam addition, Ind. Eng. Chem. Res., 49, 9105, 10.1021/ie101352s American Physical Society, 2011 Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173 Qin, 2012, Performance of extruded particles from calcium hydroxide and cement for CO2 capture, Energy Fuel, 26, 154, 10.1021/ef201141z Sun, 2019, Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets, Fuel, 239, 1046, 10.1016/j.fuel.2018.11.123 Manovic, 2012, Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles, Environ. Sci. Technol., 46, 12720, 10.1021/es303252j