3D bioprinting of a corneal stroma equivalent
Tài liệu tham khảo
FRESH Bioprinting Method. Allevi. https://biobots.io/biowiki/fresh-method/(accessed 26 December 2017).
Branco da Cunha, 2014, Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology, Biomaterials, 35, 8927, 10.1016/j.biomaterials.2014.06.047
Cen, 2008, Collagen tissue engineering: development of novel biomaterials and applications, Pediatr. Res., 63, 492, 10.1203/PDR.0b013e31816c5bc3
Chia, 2015, Recent advances in 3D printing of biomaterials, J. Biol. Eng., 9, 4, 10.1186/s13036-015-0001-4
Drury, 2004, The tensile properties of alginate hydrogels, Biomaterials, 25, 3187, 10.1016/j.biomaterials.2003.10.002
Eghrari, 2015, Overview of the cornea: structure, function, and development, Prog. Mol. Biol. Transl. Sci., 134, 7, 10.1016/bs.pmbts.2015.04.001
Farrell, 2000, Corneal transparency, 629
Golchet, 2000, Why don't we have enough cornea donors? A literature review and survey, Optometry, 71, 318
Gouveia, 2013, The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum- free conditions, Invest. Ophthalmol. Vis. Sci., 54, 7483, 10.1167/iovs.13-13092
Gouveia, 2017, Template curvature influences cell alignment to create improved human corneal tissue equivalents, Adv. Biosys.
Griffiths, 2016, Analysis of cornea curvature using radial basis functions - Part I: Methodology, Comput. Biol. Med., 77, 274, 10.1016/j.compbiomed.2016.08.011
Guo, 2013, Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair, Biomaterials, 34, 9365, 10.1016/j.biomaterials.2013.08.061
Hinton, 2015, Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels, Sci. Adv., 1, e1500758, 10.1126/sciadv.1500758
Hogan, 1971, 55
Jakab, 2010, Tissue engineering by self-assembly and bio-printing of living cells, Biofabrication, 2, 10.1088/1758-5082/2/2/022001
Karamichos, 2014, Reversal of fibrosis by TGF-β3 in a 3D in vitro model, Exp. Eye Res., 0, 31, 10.1016/j.exer.2014.04.020
Klöck, 1997, Biocompatibility of mannuronic acid-rich alginates, Biomaterials, 18, 707, 10.1016/S0142-9612(96)00204-9
Lee, 2012, Alginate: properties and biomedical applications, Prog. Polym. Sci., 37, 106, 10.1016/j.progpolymsci.2011.06.003
Li, 2003, Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation, Proc. Natl. Acad. Sci. U. S. A., 100, 15346, 10.1073/pnas.2536767100
Mandrycky, 2016, 3D bioprinting for engineering complex tissues, Biotechnol. Adv., 34, 422, 10.1016/j.biotechadv.2015.12.011
Meek, 2015, Corneal structure and transparency, Prog. Retin. Eye Res., 49, 1, 10.1016/j.preteyeres.2015.07.001
Mironov, 2006, 3D bioprinting: a Beginning, Tissue Eng., 12, 631, 10.1089/ten.2006.12.631
Mironov, 2011, Organ printing: from bioprinter to organ biofabrication line, Curr. Opin. Biotechnol., 22, 667, 10.1016/j.copbio.2011.02.006
Muller, 2001, The specific architecture of the anterior stroma accounts for maintenance of corneal curvature, Br. J. Ophthalmol., 85, 437, 10.1136/bjo.85.4.437
Murphy, 2014, 3D bioprinting of tissues and organs, Nat. Biotechnol., 32, 773, 10.1038/nbt.2958
Ozbolat, 2013, Bioprinting toward organ fabrication: challenges and future trends, IEEE Trans. Biomed. Eng., 60, 691, 10.1109/TBME.2013.2243912
Rafat, 2008, PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering, Biomaterials, 29, 3960, 10.1016/j.biomaterials.2008.06.017
Ruberti, 2008, Prelude to corneal tissue engineering - gaining control of collagen organization, Prog. Retin. Eye Res., 27, 549, 10.1016/j.preteyeres.2008.08.001
Schneider, 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671, 10.1038/nmeth.2089
Simonini, 2015, Customized finite element modelling of the human cornea, PLoS One, 10, 10.1371/journal.pone.0130426
Whitcher, 2001, Corneal blindness: a global perspective, Bull. World Health Organ., 79, 214
Wright, 2012, Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel, Regen. Med., 7, 295, 10.2217/rme.12.7
Zhang, 2015, Tissue engineering applications of three-dimensional bioprinting, Cell Biochem. Biophys., 72, 777, 10.1007/s12013-015-0531-x