Effects of Mn and Gd Co-substituted into ZnO on Structural and Magnetic Properties

Springer Science and Business Media LLC - Tập 27 - Trang 2631-2637 - 2014
Kenan Bulcar1, Mustafa Akyol2, Gönül Akça2, Ali Osman Ayaş1, Mustafa Topaksu2, Ahmet Ekicibil2
1Department of Physics, Faculty of Sciences and Letters, Adıyaman University, Adıyaman, Turkey
2Department of Physics, Faculty of Sciences and Letters, Çukurova University, Adana, Turkey

Tóm tắt

We have worked on the structural and magnetic properties of Zn0.99−xMn0.01Gd x O δ (for x = 0.02, 0.03, and 0.04) compounds prepared by using a sol–gel method. The x-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy were used to understand the structural properties of the samples. We observed that co-substitution of Mn (1 %) and Gd (2–4 %) into the ZnO does not change the hexagonal structure. Scanning electron microscope (SEM) images show us that the grain size decreases with the increasing amount of the Gd into the ZnO matrix. The magnetic properties of the samples have been investigated by using magnetic hysteresis and DC susceptibility measurements. The ZMG1 sample shows a weak ferromagnetic behavior at room temperature, whereas the ZMG2 and ZMG3 samples exhibit a paramagnetic nature. Furthermore, it is also found that the magnetizations of the samples decrease with increasing Gd content in the ZnMnO system due to the enhancing interaction between Gd 3+ ions. We summarize that the co-substitution of Mn and Gd into the ZnO generates a room-temperature ferromagnetism, but it still needs more work to obtain strong and high coercivity magnetic loops for applications.

Tài liệu tham khảo

Dietl, T.: Semicond. Science Technol. 17, 377 (2002) Ekicibil, A.: Solid State Sci. 14, 1486–1491 (2012) Akyol, M., Ekicibil, A., Kiymac, K.: J. Supercond. Nov. Magn. 26, 3257–3262 (2013) Nakamura, S.: Science 281, 956 (1998) Mirkin, C.A.: Science 286, 2095 (1999) Sharma, V.K., Xalxo, R., Varma, G.D.: Cryst. Res. Technol. 42, 34–38 (2007) Huang, G.J., Wang, J.B., Zhong, X.L., Zhou, G.C., Yan, H.L.: J. Mater. Sci. 42, 6464–6468 (2007) Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019–1022 (2000) Sato, K., Katayama, H.: Jpn. J. Appl. Phys. Part 2 40, L334–L336 (2001) Sato, K., Katayama- Yoshida, H.: Jpn. J. Appl. Phys. Part 2 39, L555–L558 (2000) Venkatesan, M., Stamenov, P., Dorneles, L.S., Gunning, R.D., Bernoux, B., Coey, J.M.D.: Appl. Phys. Lett. 90, 242508 (2007) Yu, M., Qiu, H., Chen, X., Liu, H., Wang, M.: Physica B 404, 1829–1834 (2009) Ishizumi, A., Kanemitsu, Y.: Appl. Phys. Lett. 86, 253106 (2005) Zhou, Z., Komori, T., Yoshino, M., Morinaga, M., Matsunami, N., Koizumi, A., Takeda, Y.: Appl. Phys. Lett. 86, 041107 (2005) Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V.K., Ploog, K.H.: Phys. Rev. Lett. 94, 037205 (2005) Ma, X.: Thin Solid Films 520, 5752–5755 (2012) Potzger, K., Zhou, S.Q., Eichhorn, F., Helm, M., Skorupa, W., Mücklich, A., Fassbender, J., Herrmannsdörfer, T., Bianchi, A.: J. Appl. Phys. 99, 063906 (2006) Ungureanu, M., Schmidt, H., Xu, Q., Wenckstern, H., Spemann, D., Hochmuth, H., Lorenz, M., Grundmann, M.: Superlattices Microstruct 42, 231 (2007) Ozgur, U., Aliov, Ya. I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., Markoc, H.: Appl. Phys. Rev. 98, 041301 (2005) Mandal, S.K., Das, A.K., Nath, T.K.: J. Appl. Phys. 104315, 1–8 (2006) Das, J., Mishra, D.K., Sahu, D.R., Roul, B.K.: Phys. B 407, 3575–3579 (2012) Srinivasan, G., Seehra, M.S.: Phys. Rev. B 28, 1470 (1983) Akyol, M., Ekicibil, A., Firat, T., Kiymac, K., Supercond, J.: Nov. Magn. 26, 2439–2445 (2013) Chaillout, C., Alario- Franco, M.A., Cappani, J.J., Chenavas, J., Strobel, P., Marezio, M.: Sol. State Comm. 65, 283 (1988) Sarsari, I.A., Salamati, H., Kameli, P., Ravazi, F.S., Supercond, J.: Nov. Magn. 24, 2293–2298 (2011) Mandal, S.K., Nath, T.K. Thin Solid Films 515, 2535–2541 (2006)