Redox regulation of the actin cytoskeleton and its role in the vascular system
Tài liệu tham khảo
Fletcher, 2010, Cell mechanics and the cytoskeleton, Nature, 463, 485, 10.1038/nature08908
Kim, 2010, Emerging role for the cytoskeleton as an organizer and regulator of translation, Nat. Rev. Mol. Cell Biol., 11, 75, 10.1038/nrm2818
T.H. Thomas, A. Advani, Inflammation in cardiovascular disease and regulation of the actin cytoskeleton in inflammatory cells: the actin cytoskeleton as a target, Cardiovasc. Hematol. Agents Med. Chem. 4 (2006) 165–182.
McCain, 2011, Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function, Pflug. Arch. Eur. J. Physiol., 462, 89, 10.1007/s00424-011-0951-4
Meininger, 2014, The central importance of the cytoskeleton for increased cell stiffness in cardiovascular disease. Focus on “Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation”, AJP Cell Physiol., 307, C908, 10.1152/ajpcell.00279.2014
Gupta, 2010, Impairment of ultrastructure and cytoskeleton during progression of cardiac hypertrophy to heart failure, Lab. Invest., 90, 520, 10.1038/labinvest.2010.43
Hein, 2000, The role of the cytoskeleton in heart failure, Cardiovasc. Res., 45, 273, 10.1016/S0008-6363(99)00268-0
Wilson, 2015, Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking, Front. Cell. Neurosci., 9, 381, 10.3389/fncel.2015.00381
Farah, 2011, Diverse protective roles of the actin cytoskeleton during oxidative stress, Cytoskeleton, 68, 340, 10.1002/cm.20516
Vara, 2014, Reactive oxygen species: physiological roles in the regulation of vascular cells, Curr. Mol. Med., 14, 1103, 10.2174/1566524014666140603114010
Förstermann, 2008, Oxidative stress in vascular disease_causes, defense mechanisms and potential therapies, Nat. Rev. Cardiol., 5, 338, 10.1038/ncpcardio1211
Mochida, 2002, The novel adaptor protein, Mti1p, and Vrp1p, a homolog of Wiskott-Aldrich syndrome protein-interacting protein (WIP), may antagonistically regulate type I myosins in Saccharomyces cerevisiae, Genetics, 160, 923, 10.1093/genetics/160.3.923
Dominguez, 2011, Actin structure and function, Annu. Rev. Biophys., 40, 169, 10.1146/annurev-biophys-042910-155359
Estes, 1992, Tightly-bound divalent cation of actin, J. Muscle Res. Cell Motil., 13, 272, 10.1007/BF01766455
Carlier, 1997, Control of actin dynamics in cell motility, J. Mol. Biol., 269, 459, 10.1006/jmbi.1997.1062
Pollard, 2003, Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112, 453, 10.1016/S0092-8674(03)00120-X
Di Meo, 2016, Role of ROS and RNS sources in physiological and pathological conditions, Oxid. Med. Cell. Longev., 2016, 1
Taverne, 2013, Reactive oxygen species and the cardiovascular system, Oxid. Med. Cell. Longev., 2013, 862423, 10.1155/2013/862423
Lassègue, 2010, NADPH oxidases: functions and pathologies in the vasculature, Arterioscler. Thromb. Vasc. Biol., 30, 653, 10.1161/ATVBAHA.108.181610
Bedard, 2007, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev., 87, 245, 10.1152/physrev.00044.2005
Turrens, 2003, Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335, 10.1113/jphysiol.2003.049478
Veal, 2007, Hydrogen peroxide sensing and signaling, Mol. Cell., 26, 1, 10.1016/j.molcel.2007.03.016
Lambeth, 2004, NOX enzymes and the biology of reactive oxygen, Nat. Rev. Immunol., 4, 181, 10.1038/nri1312
Griendling, 2004, Novel NAD(P)H oxidases in the cardiovascular system, Heart, 90, 491, 10.1136/hrt.2003.029397
Lassegue, 2012, Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system, Circ. Res., 110, 1364, 10.1161/CIRCRESAHA.111.243972
Sugamura, 2011, Reactive oxygen species in cardiovascular disease, Free Radic. Biol. Med., 51, 978, 10.1016/j.freeradbiomed.2011.05.004
K.K. Griendling, D. Sorescu, M. Ushio-Fukai, NAD(P)H oxidase, Circ. Res. 86 (2000).
Stadtman, 2000, Protein oxidation, Ann. N. Y. Acad. Sci., 899, 191, 10.1111/j.1749-6632.2000.tb06187.x
Cai, 2013, Protein oxidative modifications: beneficial roles in disease and health, J. Biochem. Pharmacol. Res., 1, 15
Stadtman, 2003, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 25, 207, 10.1007/s00726-003-0011-2
Fedorova, 2009, Reversible and irreversible modifications of skeletal muscle proteins in a rat model of acute oxidative stress, Biochim. Biophys. Acta, 1792, 1185, 10.1016/j.bbadis.2009.09.011
Riederer, 2009, Oxidation proteomics: the role of thiol modifications, Curr. Proteom., 6, 51, 10.2174/157016409787847448
Winterbourn, 2008, Thiol chemistry and specificity in redox signaling, Free Radic. Biol. Med., 45, 549, 10.1016/j.freeradbiomed.2008.05.004
Murphy, 2012, Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications, Antioxid. Redox Signal., 16, 476, 10.1089/ars.2011.4289
Charles, 2007, Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue, Mol. Cell. Proteom., 6, 1473, 10.1074/mcp.M700065-MCP200
Poole, 2008, Discovering mechanisms of signaling-mediated cysteine oxidation, Curr. Opin. Chem. Biol., 12, 18, 10.1016/j.cbpa.2008.01.021
Leichert, 2008, Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. USA, 105, 8197, 10.1073/pnas.0707723105
Reddie, 2008, Expanding the functional diversity of proteins through cysteine oxidation, Curr. Opin. Chem. Biol., 12, 746, 10.1016/j.cbpa.2008.07.028
Janssen-Heininger, 2008, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med., 45, 1, 10.1016/j.freeradbiomed.2008.03.011
Foster, 2009, Protein S-nitrosylation in health and disease: a current perspective, Trends Mol. Med., 15, 391, 10.1016/j.molmed.2009.06.007
Thom, 2008, Actin S-nitrosylation inhibits neutrophil beta2 integrin function, J. Biol. Chem., 283, 10822, 10.1074/jbc.M709200200
Zhang, 2015, S-nitrosylation of cofilin-1 serves as a novel pathway for VEGF-stimulated endothelial cell migration, J. Cell. Physiol., 230, 406, 10.1002/jcp.24724
Zhang, 2015, S-nitrosylation of cofilin-1 mediates estradiol-17β-stimulated endothelial cytoskeleton remodeling, Mol. Endocrinol., 29, 434, 10.1210/me.2014-1297
Sun, 2010, Protein S-nitrosylation and cardioprotection, Circ. Res., 106, 285, 10.1161/CIRCRESAHA.109.209452
Murphy, 2012, S-nitrosylation: a radical way to protect the heart, J. Mol. Cell. Cardiol., 52, 568, 10.1016/j.yjmcc.2011.08.021
Kohr, 2011, Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture, Circ. Res., 108, 418, 10.1161/CIRCRESAHA.110.232173
Requejo, 2010, Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage, FEBS J., 277, 1465, 10.1111/j.1742-4658.2010.07576.x
S. Biswas, A.S. Chida, I. Rahman, Redox Modifications of Protein-thiols: Emerging Roles in Cell Signaling, 2006, doi: http://dx.doi.org/10.1016/j.bcp.2005.10.044.
Cooper, 2011, Reversible and irreversible protein glutathionylation: biological and clinical aspects, Expert Opin. Drug Metab. Toxicol., 7, 891, 10.1517/17425255.2011.577738
Coan, 1992, Protein sulfhydryls are protected from irreversible oxidation by conversion to mixed disulfides, Arch. Biochem. Biophys., 295, 369, 10.1016/0003-9861(92)90530-A
Dalle-Donne, 2011, S-glutathiolation in life and death decisions of the cell, Free Radic. Res., 45, 3, 10.3109/10715762.2010.515217
Xiong, 2011, S-glutathionylation: from molecular mechanisms to health outcomes, Antioxid. Redox Signal., 15, 233, 10.1089/ars.2010.3540
Tan, 2004, Membrane trafficking of G protein-coupled receptors, Annu. Rev. Pharmacol. Toxicol., 44, 559, 10.1146/annurev.pharmtox.44.101802.121558
Jacob, 2003, Sulfur and selenium: the role of oxidation state in protein structure and function, Angew. Chem. – Int. Ed., 42, 4742, 10.1002/anie.200300573
Lo Conte, 2013, The redox biochemistry of protein sulfenylation and sulfinylation, J. Biol. Chem., 288, 26480, 10.1074/jbc.R113.467738
Dalle-Donne, 2006, Protein carbonylation, cellular dysfunction, and disease progression, J. Cell. Mol. Med., 10, 389, 10.1111/j.1582-4934.2006.tb00407.x
Taylor, 2003, Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins, J. Biol. Chem., 278, 19587, 10.1074/jbc.C300135200
Giulivi, 2003, Tyrosine oxidation products: analysis and biological relevance, Amino Acids, 25, 227, 10.1007/s00726-003-0013-0
Warren, 2012, Redox properties of tyrosine and related molecules, FEBS Lett., 586, 596, 10.1016/j.febslet.2011.12.014
Prokai, 2007, Mass spectrometry-based survey of age-associated protein carbonylation in rat brain mitochondria, J. Mass Spectrom., 42, 1583, 10.1002/jms.1345
Yan, 2002, Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage, EMBO J., 21, 5164, 10.1093/emboj/cdf528
Yan, 1998, Mitochondrial adenine nucleotide translocase is modified oxidatively during aging, Proc. Natl. Acad. Sci. USA, 95, 12896, 10.1073/pnas.95.22.12896
Stadtman, 2001, Protein oxidation in aging and age-related diseases, Ann. N. Y. Acad. Sci., 928, 22, 10.1111/j.1749-6632.2001.tb05632.x
M. Mohora, M. Greabu, A. Totan, N. Mitrea, M. Battino, Redox-sensitive signaling factors and antioxidants, Farmacia 57 (2009) 399–411.
De Nigris, 2001, Oxidation-sensitive transcription factors and molecular mechanisms in the arterial wall, Antioxid. Redox Signal., 3, 1119, 10.1089/152308601317203620
Brigelius-Flohé, 2011, Basic principles and emerging concepts in the redox control of transcription factors, Antioxid. Redox Signal., 15, 2335, 10.1089/ars.2010.3534
Wilson, 2016, Actin filaments-A target for redox regulation, Cytoskeleton, 73, 577, 10.1002/cm.21315
Milzani, 1997, Prolonged oxidative stress on actin, Arch. Biochem. Biophys., 339, 267, 10.1006/abbi.1996.9847
Fiaschi, 2006, Redox regulation of β-actin during integrin-mediated cell adhesion, J. Biol. Chem., 281, 22983, 10.1074/jbc.M603040200
Lassing, 2007, molecular and structural basis for redox regulation of β-actin, J. Mol. Biol., 370, 331, 10.1016/j.jmb.2007.04.056
DalleDonne, 1999, The tert-butyl hydroperoxide-induced oxidation of actin Cys-374 is coupled with structural changes in distant regions of the protein, Biochemistry, 38, 12471, 10.1021/bi990367k
Wang, 2001, Reversible glutathionylation regulates actin polymerization in A431 cells, J. Biol. Chem., 276, 47763, 10.1074/jbc.C100415200
Stournaras, 1990, Glutathionyl (cysteine-374) actin forms filaments of low mechanical stability, Biochim. Biophys. Acta (BBA)/Protein Struct. Mol., 1037, 86, 10.1016/0167-4838(90)90105-O
Stone, 2006, Hydrogen peroxide: a signaling messenger, Antioxid. Redox Signal., 8, 243, 10.1089/ars.2006.8.243
Munnamalai, 2009, Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth, J. Neurochem., 108, 644, 10.1111/j.1471-4159.2008.05787.x
Moldovan, 2000, Redox changes of cultured endothelial cells and actin dynamics, Circ. Res., 86, 549, 10.1161/01.RES.86.5.549
Ruei-Jiun Hung, 2011, Direct redox regulation of F-actin, Science, 832, 1710, 10.1126/science.1211956
Grintsevich, 2016, F-actin dismantling through a redox-driven synergy between mcal and cofilin, Nat. Cell Biol., 18, 876, 10.1038/ncb3390
Duke, 1976, Reciprocal reactivities of specific thiols when actin binds to myosin, Proc. Natl. Acad. Sci. USA, 73, 302, 10.1073/pnas.73.2.302
D.F. Liu, D. Wang, A. Stracher, The accessibility of the thiol groups on G- and Factin of rabbit muscle, Biochem. J. 266 (1990) 453–459.
Terman, 2013, Post-translational modification and regulation of actin, Curr. Opin. Cell Biol., 25, 30, 10.1016/j.ceb.2012.10.009
Figueiredo-Freitas, 2015, S-nitrosylation of sarcomeric proteins depresses myofilament Ca2+ sensitivity in intact cardiomyocytes, Antioxid. Redox Signal, 23, 1017, 10.1089/ars.2015.6275
Lundquist, 2014, Redox modification of nuclear actin by MICAL-2 regulates SRF signaling, Cell, 156, 563, 10.1016/j.cell.2013.12.035
Ashida, 2006, Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high gleason score and prostate cancer progression, Clin. Cancer Res., 12, 2767, 10.1158/1078-0432.CCR-05-1995
Loria, 2014, Sema6A and Mical1 control cell growth and survival of BRAF V600E human melanoma cells, Oncotarget, 6, 2779, 10.18632/oncotarget.2995
Oztug Durer, 2010, F-actin structure destabilization and DNase I binding loop fluctuations. Mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin, J. Mol. Biol., 395, 544, 10.1016/j.jmb.2009.11.001
Vicente-Manzanares, 2009, Non-muscle myosin II takes centre stage in cell adhesion and migration, Nat. Rev. Cell Biol., 10, 778, 10.1038/nrm2786
H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Section 18.3 myosin: the actin motor protein, in: Mol. Cell Biol., 2000, doi: http://dx.doi.org/10.1017/CBO9781107415324.004.
Hartman, 2012, The myosin superfamily at a glance, J. Cell Sci., 125, 1627, 10.1242/jcs.094300
Miller, 2011, The contractile ring, Curr. Biol., 21, R976, 10.1016/j.cub.2011.10.044
Matsumura, 2011, Myosin light chain kinases and phosphatase in mitosis and cytokinesis, Arch. Biochem. Biophys., 510, 76, 10.1016/j.abb.2011.03.002
Heng, 2010, Actin cytoskeleton dynamics and the cell division cycle, Int. J. Biochem. Cell Biol., 42, 1622, 10.1016/j.biocel.2010.04.007
N.V. Bogatcheva, J.G. Garcia, A.D. Verin, Molecular mechanisms of thrombininduced endothelial cell permeability, Biochemistry 67 (2002) 75–84 (doi: BCM67010088) (pii).
Dillon, 1981, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science, 211, 495, 10.1126/science.6893872
Geeves, 1998, Structural mechanism of muscle contraction, Annu. Rev. Biochem., 68, 687, 10.1146/annurev.biochem.68.1.687
Moen, 2014, Redox-sensitive residue in the actin-binding interface of myosin, Biochem. Biophys. Res. Commun., 453, 345, 10.1016/j.bbrc.2014.09.072
Klein, 2011, Structural and functional impact of site-directed methionine oxidation in myosin, Biochemistry, 50, 10318, 10.1021/bi201279u
Fiaschi, 2012, Redox regulation of nonmuscle myosin heavy chain during integrin engagement, J. Signal Transduct., 2012, 1, 10.1155/2012/754964
Bernstein, 2010, ADF/Cofilin: a functional node in cell biology, Trends Cell Biol., 20, 187, 10.1016/j.tcb.2010.01.001
Gunst, 2008, Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction, Am. J. Physiol. Cell Physiol., 295, C576, 10.1152/ajpcell.00253.2008
Bravo-Cordero, 2013, Functions of cofilin in cell locomotion and invasion, Nat. Rev. Mol. Cell Biol., 14, 405, 10.1038/nrm3609
Zhao, 2008, Actin depolymerization factor/cofilin activation regulates actin polymerization and tension development in canine tracheal smooth muscle, J. Biol. Chem., 283, 36522, 10.1074/jbc.M805294200
Lee, 2005, Studying the effects of actin cytoskeletal destabilization on cell cycle by cofilin overexpression, Mol. Biotechnol., 31, 1, 10.1385/MB:31:1:001
Kaji, 2008, LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning, J. Biol. Chem., 283, 4983, 10.1074/jbc.M708644200
Gunsalus, 1995, Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis, J. Cell Biol., 131, 1243, 10.1083/jcb.131.5.1243
Luo, 2014, Taurine chloramine-induced inactivation of cofilin protein through methionine oxidation, Free Radic. Biol. Med., 75, 84, 10.1016/j.freeradbiomed.2014.07.018
Klemke, 2008, Oxidation of cofilin mediates T Cell hyporesponsiveness under oxidative stress conditions, Immunity, 29, 404, 10.1016/j.immuni.2008.06.016
Klamt, 2009, Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin, Nat. Cell Biol., 11, 1241, 10.1038/ncb1968
Cameron, 2015, Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation, Curr. Biol., 25, 1520, 10.1016/j.cub.2015.04.020
Bernstein, 2012, Incorporation of cofilin into rods depends on disulfide intermolecular bonds: implications for actin regulation and neurodegenerative disease, J. Neurosci., 32, 6670, 10.1523/JNEUROSCI.6020-11.2012
Arnaout, 2005, Integrin structure, allostery, and bidirectional signaling, Annu. Rev. Cell Dev. Biol., 21, 381, 10.1146/annurev.cellbio.21.090704.151217
Shattil, 2010, The final steps of integrin activation: the end game, Nat. Rev. Mol. Cell Biol., 11, 288, 10.1038/nrm2871
De Franceschi, 2015, Integrin traffic – the update, J. Cell Sci., 128, 839, 10.1242/jcs.161653
Bazan-Socha, 2005, Integrins in pulmonary inflammatory diseases, Curr. Pharm. Des., 11, 893, 10.2174/1381612053381710
Hynes, 2002, Integrins: bidirectional, allosteric signaling machines, Cell, 110, 673, 10.1016/S0092-8674(02)00971-6
Chuang, 2003, Superoxide activates very late antigen-4 on an eosinophil cell line and increases cellular binding to vascular cell adhesion molecule-1, Eur. J. Immunol., 33, 645, 10.1002/eji.200323446
Eble, 2014, Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins, Antioxid. Redox Signal., 20, 1977, 10.1089/ars.2013.5294
Y. Mou, H. Ni, J.A. Wilkins, The selective inhibition of beta 1 and beta 7 integrinmediated lymphocyte adhesion by bacitracin, J. Immunol. 161 (1998) 6323–6329.
Liu, 1997, Disruption of the long-range GPIIIa Cys5-Cys435 disulfide bond results in the production of a constitutively active GPIIb-IIIa integrin complex, Blood, 90, 573a
Ushio-Fukai, 2009, Compartmentalization of redox signaling through NADPH oxidase-derived ROS, Antioxid. Redox Signal., 11, 1289, 10.1089/ars.2008.2333
De Rezende, 2012, Integrin α7β1 is a redox-regulated target of hydrogen peroxide in vascular smooth muscle cell adhesion, Free Radic. Biol. Med., 53, 521, 10.1016/j.freeradbiomed.2012.05.032
Kamata, 2004, Critical cysteine residues for regulation of integrin alphaIIbbeta3 are clustered in the epidermal growth factor domains of the beta3 subunit, Biochem. J., 378, 1079, 10.1042/bj20031701
Mor-Cohen, 2008, Specific cysteines in beta3 are involved in disulfide bond exchange-dependent and -independent activation of alphaIIbbeta3, J. Biol. Chem., 283, 19235, 10.1074/jbc.M802399200
Shi, 2005, The crystal structure of the plexin-semaphorin-integrin domain/hybrid domain/I-EGF1 segment from the human integrin β2 subunit at 1.8-Å resolution, J. Biol. Chem., 280, 30586, 10.1074/jbc.M502525200
Takagi, 2001, Definition of EGF-like, closely interacting modules that bear activation epitopes in integrin beta subunits, Proc. Natl. Acad. Sci. USA, 98, 11175, 10.1073/pnas.201420198
Wang, 2010, Structural basis of integrin transmembrane activation, J. Cell. Biochem., 109, 447
Zhu, 2007, Requirement of alpha and beta subunit transmembrane helix separation for integrin outside-in signaling, Blood, 110, 2475, 10.1182/blood-2007-03-080077
Luo, 2004, A specific interface between integrin transmembrane helices and affinity for ligand, PLoS Biol., 2, 10.1371/journal.pbio.0020153
Metcalf, 2010, NMR analysis of the alphaIIb beta3 cytoplasmic interaction suggests a mechanism for integrin regulation, Proc. Natl. Acad. Sci. USA, 107, 22481, 10.1073/pnas.1015545107
Liu, 2016, High glucose regulates LN expression in human liver sinusoidal endothelial cells through ROS/integrin αvβ3 pathway, Environ. Toxicol. Pharmacol., 42, 231, 10.1016/j.etap.2016.01.021
Lamari, 2007, Cell adhesion and integrin expression are modulated by oxidative stress in EA.hy 926 cells, Free Radic. Res., 41, 812, 10.1080/10715760701390027
Fujii, 2016, Polymerase delta-interacting protein 2 regulates collagen accumulation via activation of the Akt/mTOR pathway in vascular smooth muscle cells, J. Mol. Cell. Cardiol., 92, 21, 10.1016/j.yjmcc.2016.01.016
Burridge, 2004, Rho and Rac take center stage, Cell, 116, 167, 10.1016/S0092-8674(04)00003-0
Piekny, 2005, Cytokinesis: welcome to the Rho zone, Trends Cell Biol., 15, 651, 10.1016/j.tcb.2005.10.006
Chircop, 2014, Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells, LANDES Biosci., 5, 37
Ridley, 2015, Rho GTPase signalling in cell migration, Curr. Opin. Cell Biol., 36, 103, 10.1016/j.ceb.2015.08.005
H.B. Hodges-Loaiza, L.E. Parker, A.D. Cox, Prenylation and phosphorylation of Ras superfamily small GTPases, in: Enzymes, 2011, pp. 43–69, doi: http://dx.doi.org/10.1016/B978-0-12-415922-8.00003-3.
Heo, 2005, Mechanism of redox-mediated guanine nucleotide exchange on redox-active Rho GTPases, J. Biol. Chem., 280, 31003, 10.1074/jbc.M504768200
Aghajanian, 2009, Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif, PLoS One, 4, e8045, 10.1371/journal.pone.0008045
Hobbs, 2015, Redox regulation of Rac1 by thiol oxidation, Free Radic. Biol. Med., 79, 237, 10.1016/j.freeradbiomed.2014.09.027
Mori, 2004, Invasive potential induced under long-term oxidative stress in mammary epithelial cells, Cancer Res., 64, 7464, 10.1158/0008-5472.CAN-04-1725
Nagase, 2012, Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1, Hypertension, 59, 500, 10.1161/HYPERTENSIONAHA.111.185520
Grek, 2013, Causes and consequences of cysteine s-glutathionylation, J. Biol. Chem., 288, 26497, 10.1074/jbc.R113.461368
Heo, 2006, Redox regulation of RhoA, Biochemistry, 45, 14481, 10.1021/bi0610101
Gerhard, 2008, Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells, J. Med. Microbiol., 57, 765, 10.1099/jmm.0.47769-0
Wink, 2011, Nitric oxide and redox mechanisms in the immune response, J. Leukoc. Biol., 89, 873, 10.1189/jlb.1010550
Lyle, 2009, Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells, Circ. Res., 105, 249, 10.1161/CIRCRESAHA.109.193722
Chandra, 2012, Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway, Br. J. Pharmacol., 165, 506, 10.1111/j.1476-5381.2011.01584.x
Yu, 2012, H2O2 activates G protein, 12 to disrupt the junctional complex and enhance ischemia reperfusion injury, Proc. Natl. Acad. Sci., 109, 6680, 10.1073/pnas.1116800109
Lopez-Haber, 2013, Cucurbitacin I inhibits Rac1 activation in breast cancer cells by a reactive oxygen species-mediated mechanism and independently of Janus tyrosine kinase 2 and P-Rex1, Mol. Pharmacol., 83, 1141, 10.1124/mol.112.084293
El-Remessy, 2010, Peroxynitrite mediates diabetes-induced endothelial dysfunction: possible role of Rho kinase activation, Exp. Diabetes Res., 2010, 247861, 10.1155/2010/247861
Dada, 2007, Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na,K-ATPase in A549 cells, J. Cell Sci., 120, 2214, 10.1242/jcs.003038
Jin, 2004, Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta, Am. J. Physiol. Heart Circ. Physiol., 287, H1495, 10.1152/ajpheart.01006.2003
Sun, 2014, Impact of oxidative stress on cellular biomechanics and rho signaling in C2C12 myoblasts, J. Biomech., 47, 3650, 10.1016/j.jbiomech.2014.09.036
Nimnual, 2003, Redox-dependent downregulation of Rho by Rac, Nat. Cell Biol., 5, 236, 10.1038/ncb938
Kondrikov, 2011, Reactive oxygen species-dependent RhoA activation mediates collagen synthesis in hyperoxic lung fibrosis, Free Radic. Biol. Med., 50, 1689, 10.1016/j.freeradbiomed.2011.03.020
Loirand, 2013, Small G proteins in the cardiovascular system: physiological and pathological aspects, Physiol. Rev., 93, 1659, 10.1152/physrev.00021.2012
A. Manea, M. Simionescu, Nox enzymes and oxidative stress in atherosclerosis (Schol. Ed), Front. Biosci. 4 (2012) 651–670.
Louis, 2010, Vascular smooth muscle cell motility: from migration to invasion, Exp. Clin. Cardiol., 15
Watanabe, 2015, IQGAPs as key regulators of actin-cytoskeleton dynamics, Cell Struct. Funct., 40, 69, 10.1247/csf.15003
Mataraza, 2003, IQGAP1 promotes cell motility and invasion, J. Biol. Chem., 278, 41237, 10.1074/jbc.M304838200
Adachi, 2014, Involvement of IQGAP family proteins in the regulation of mammalian cell cytokinesis, Genes Cells, 19, 803, 10.1111/gtc.12179
Kaplan, 2011, Localized cysteine sulfenic acid formation by vascular endothelial growth factor: role in endothelial cell migration and angiogenesis, Free Radic. Res., 45, 1124, 10.3109/10715762.2011.602073
Ikeda, 2005, IQGAP1 regulates reactive oxygen species – dependent endothelial cell migration through interacting With Nox2, Arterioscler. Thromb. Vasc. Biol., 25, 2295, 10.1161/01.ATV.0000187472.55437.af
Oshikawa, 2010, Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice, PLoS One, 5, e10189, 10.1371/journal.pone.0010189
Wu, 2005, Subcellular targeting of oxidants during endothelial cell migration, J. Cell Biol., 171, 893, 10.1083/jcb.200507004
Lee, 1998, Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor, J. Biol. Chem., 273, 15366, 10.1074/jbc.273.25.15366
Meng, 2002, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo, Mol. Cell., 9, 387, 10.1016/S1097-2765(02)00445-8
Lee, 2002, Reversible inactivation of the tumor suppressor PTEN by H2O2, J. Biol. Chem., 277, 20336, 10.1074/jbc.M111899200
Blanchetot, 2002, Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress, EMBO J., 21, 493, 10.1093/emboj/21.4.493
Chiarugi, 2001, The redox regulation of LMW-PTP during cell proliferation or growth inhibition, IUBMB Life, 52, 55, 10.1080/15216540252774775
P. Chiarugi, S. Biochimiche, Reactive oxygen species as mediators of cell adhesion, J. Cell Biol. 52 (2003) 28–32.
Cirri, 1998, Low molecular weight protein-tyrosine phosphatase tyrosine phosphorylation by c-Src during platelet-derived growth factor-induced mitogenesis correlates with its subcellular targeting, J. Biol. Chem., 273, 32522, 10.1074/jbc.273.49.32522
Chiarugi, 2000, The low M(r) protein-tyrosine phosphatase is involved in Rho-mediated cytoskeleton rearrangement after integrin and platelet-derived growth factor stimulation, J. Biol. Chem., 275, 4640, 10.1074/jbc.275.7.4640
Chiarugi, 2002, Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling: LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation, J. Biol. Chem., 277, 37331, 10.1074/jbc.M205203200
Caselli, 1998, The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2, J. Biol. Chem., 273, 32554, 10.1074/jbc.273.49.32554
Abdelsaid, 2012, S-glutathionylation of LMW-PTP regulates VEGF-mediated FAK activation and endothelial cell migration, J. Cell Sci., 125, 4751, 10.1242/jcs.103481
Tatosyan, 2000, Kinases of the Src family: structure and functions, Biochemistry, 65, 49
Giannoni, 2005, Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth, Mol. Cell. Biol., 25, 6391, 10.1128/MCB.25.15.6391-6403.2005
Werner, 2002, Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases, J. Cell Biol., 158, 357, 10.1083/jcb.200111028
Chiarugi, 2003, Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion, J. Cell Biol., 161, 933, 10.1083/jcb.200211118
Knock, 2011, Redox regulation of protein kinases as a modulator of vascular function, Antioxid. Redox Signal., 15, 1531, 10.1089/ars.2010.3614
MacKay, 2014, Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease, J. Physiol., 0, 1
Zhang, 2015, TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism, Arch. Biochem. Biophys., 568, 1, 10.1016/j.abb.2015.01.001
Mills, 2007, A novel disulfide bond in the SH2 domain of the C-terminal Src kinase controls catalytic activity, J. Mol. Biol., 365, 1460, 10.1016/j.jmb.2006.10.076
Akhand, 1999, Nitric oxide controls Src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism, J. Biol. Chem., 274, 25821, 10.1074/jbc.274.36.25821
Xu, 1999, Crystal structures of c-Src reveal features of its autoinhibitory mechanism, Mol. Cell., 3, 629, 10.1016/S1097-2765(00)80356-1
Cunnick, 1998, Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway, J. Biol. Chem., 273, 14468, 10.1074/jbc.273.23.14468
Tang, 2005, Inactivation of SRC family tyrosine kinases by reactive oxygen species in vivo, J. Biol. Chem., 280, 23918, 10.1074/jbc.M503498200
Morla, 2000, Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase, Biochem. Biophys. Res. Commun., 272, 298, 10.1006/bbrc.2000.2769
S. Vepa, W.M. Scribner, N.L. Parinandi, D. English, J.G. Garcia, V. Natarajan, Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells, Am. J. Physiol. 277 (1999) L150–L158.
Oktay, 1999, Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle, J. Cell Biol., 145, 1461, 10.1083/jcb.145.7.1461
Hildebrand, 1993, Identification of sequences required for the efficient localization of the Focal Adhesion Kinase, pp125FAK, to cellular focal adhesions, J. Cell Biol., 123, 993, 10.1083/jcb.123.4.993
Parsons, 2003, Focal adhesion kinase: the first ten years, J. Cell Sci., 116, 1409, 10.1242/jcs.00373
Zhao, 2011, Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis, Adv. Drug Deliv. Rev., 63, 610, 10.1016/j.addr.2010.11.001
Ben Mahdi, 2001, Focal adhesion kinase regulation by oxidative stress in different cell types, IUBMB Life, 50, 291, 10.1080/713803721
Basuroy, 2010, Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers, AJP Gastrointest. Liver Physiol., 299, G186, 10.1152/ajpgi.00368.2009
Thomas, 1998, SH2- and SH3-mediated interactions between focal adhesion kinase and Src, J. Biol. Chem., 273, 577, 10.1074/jbc.273.1.577
Y. Nishizuka, Protein kinase C and lipid signaling for sustained cellular responses, FASEB J. 9 (1995) 484–496.
Nishizuka, 1992, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C, Science, 258, 607, 10.1126/science.1411571
Dovas, 2006, PKCbeta-dependent activation of RhoA by syndecan-4 during focal adhesion formation, J. Cell Sci., 119, 2837, 10.1242/jcs.03020
Giorgi, 2010, Redox control of protein kinase C: cell- and disease-specific aspects, Antioxid. Redox Signal., 13, 1051, 10.1089/ars.2009.2825
R. Gopalakrishna, W.B. Anderson, Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain, Proc. Natl. Acad. Sci. USA 86 (1989) 6758–6762.
Taher, 1993, Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells, Arch. Biochem. Biophys., 303, 260, 10.1006/abbi.1993.1281
Dovas, 2010, Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion, J. Biol. Chem., 285, 23296, 10.1074/jbc.M109.098129
Ali, 2006, Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants, Am. J. Physiol. Lung Cell. Mol. Physiol., 291, L38, 10.1152/ajplung.00287.2004
Siow, 2006, Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase Cbeta activation, Biochem. J., 398, 73, 10.1042/BJ20051810
Herrera, 2010, Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(α)-dependent NADPH oxidase activation, J. Biol. Chem., 285, 21323, 10.1074/jbc.M110.109157
L.V. Dekker, M. Leitges, G. Altschuler, N. Mistry, A. McDermott, J. Roes, A.W. Segal, Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils, Biochem. J. 347 (Pt 1) (2000) 285–289.
Gopalakrishna, 2000, Protein kinase C signaling and oxidative stress, Free Radic. Biol. Med., 28, 1349, 10.1016/S0891-5849(00)00221-5
DelCarlo, 2006, Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-betaI, Am. J. Physiol. Cell Physiol., 290, C802, 10.1152/ajpcell.00214.2005
Knapp, 2000, Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content, J. Biol. Chem., 275, 24136, 10.1074/jbc.M002043200
Korichneva, 2002, Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen, J. Biol. Chem., 277, 44327, 10.1074/jbc.M205634200
G.E. Kass, S.K. Duddy, S. Orrenius, Activation of hepatocyte protein kinase C by redox-cycling quinones, Biochem. J. 260 (1989) 499–507.
Larsson, 1989, Translocation and enhancement of phosphotransferase activity of protein kinase C following exposure in mouse epidermal cells to oxidants, Cancer Res., 49, 5627
Whisler, 1995, Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells, Arch. Biochem. Biophys., 319, 23, 10.1006/abbi.1995.1263
Gopalakrishna, 1987, Susceptibility of protein kinase C to oxidative inactivation: loss of both phosphotransferase activity and phorbol diester binding, FEBS Lett., 225, 233, 10.1016/0014-5793(87)81164-X
Wolf, 1985, A model for intracellular translocation of protein kinase C involving synergism between Ca{+2+} and phorbol esters, Nature, 317, 546, 10.1038/317546a0
Kraft, 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature, 301, 621, 10.1038/301621a0
M. Inoue, A. Kishimoto, Y. Takai, Y. Nishizuka, Studies on a cyclic nucleotideindependent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain, J. Biol. Chem. 252 (1977) 7610–7616.
Goldhaber, 1989, Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. Implications for ischemia and reperfusion injury, J. Clin. Invest., 83, 1800, 10.1172/JCI114085
J.S. Gill, W.J. McKenna, A.J. Camm, European Journal of Pharmacology: Environmental Toxicology and Pharmacology, 292 (3-4) (1995) 337–340.
Fearon, 1999, Modulation of recombinant human cardiac L-type Ca2+ channel α(1C) subunits by redox agents and hypoxia, J. Physiol., 514, 629, 10.1111/j.1469-7793.1999.629ad.x
Kang, 2008, Effects of redox potential and Ca2+ on the inositol 1,4,5-trisphosphate receptor L3-1 loop region: implications for receptor regulation, J. Biol. Chem., 283, 25567, 10.1074/jbc.M803321200
Higo, 2005, Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44, Cell, 120, 85, 10.1016/j.cell.2004.11.048
Lancel, 2009, Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674, Circ. Res., 104, 720, 10.1161/CIRCRESAHA.108.188441
Tong, 2008, High glucose oxidizes SERCA cysteine-674 and prevents inhibition by nitric oxide of smooth muscle cell migration, J. Mol. Cell. Cardiol., 44, 361, 10.1016/j.yjmcc.2007.10.022
Adachi, 2004, S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide, Nat. Med., 10, 1200, 10.1038/nm1119
Lancel, 2010, Oxidative post-translational modifications mediate decreased SERCA activity and myocyte dysfunction in Gαq-overexpressing mice, Circ. Res., 107, 228, 10.1161/CIRCRESAHA.110.217570
ZHENG, 2007, Sodium-calcium exchanger in pulmonary artery smooth muscle cells, Ann. N. Y. Acad. Sci., 1099, 427, 10.1196/annals.1387.017
Syyong, 2007, ATP promotes NCX-reversal in aortic smooth muscle cells by DAG-activated Na+ entry, Biochem. Biophys. Res. Commun., 357, 1177, 10.1016/j.bbrc.2007.04.080
Yang, 2002, Na+-Ca2+ exchange activity is localized in the t-tubules of rat ventricular myocytes, Circ. Res, 91, 315, 10.1161/01.RES.0000030180.06028.23
Teubl, 1999, Na+/Ca2+ exchange facilitates Ca2+-dependent activation of endothelial nitric-oxide synthase, J. Biol. Chem., 274, 29529, 10.1074/jbc.274.41.29529
A. Babsky, N. Doliba, N. Doliba, A. Savchenko, S. Wehrli, M. Osbakken, Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts, Exp. Biol. Med. 226 (2001) 543–551.
Kato, 1988, Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency, Mol. Cell. Biochem, 83, 15, 10.1007/BF00223194
T. Iwamoto, Y. Pan, S. Wakabayashi, T. Imagawa, H.I. Yamanaka, M. Shigekawa, Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C, J. Biol. Chem. 271 (1996) 13609–13615.
Santacruz-Toloza, 2000, Functional analysis of a disulfide bond in the cardiac Na+-Ca2+ exchanger, J. Biol. Chem., 275, 182, 10.1074/jbc.275.1.182
Zaidi, 2003, Oxidative inactivation of purified plasma membrane Ca2+-ATPase by hydrogen peroxide and protection by calmodulin, Biochemistry, 42, 12001, 10.1021/bi034565u
Zaidi, 1999, Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase, Free Radic. Biol. Med., 27, 810, 10.1016/S0891-5849(99)00128-8
Yang, 2005, Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms, J. Biol. Chem., 280, 207, 10.1074/jbc.M410509200
Hudmon, 2005, CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation, J. Cell Biol., 171, 537, 10.1083/jcb.200505155
McHugh, 2000, Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain, Proc. Natl. Acad. Sci. USA, 97, 12334, 10.1073/pnas.210384297
Shigekawa, 2007, Regulation of the cardiac Na+/Ca2+ exchanger by calcineurin and protein kinase C, Ann. N. Y. Acad. Sci., 1099, 53, 10.1196/annals.1387.059
Van Lierop, 2002, Activation of smooth muscle myosin light chain kinase by calmodulin. Role of LYS(30) and GLY(40), J. Biol. Chem., 277, 6550, 10.1074/jbc.M111404200
Sacksteder, 2006, Tertiary structural rearrangements upon oxidation of Methionine145 in calmodulin promotes targeted proteasomal degradation, Biophys. J., 91, 1480, 10.1529/biophysj.106.086033
Balog, 2009, Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome, Biochemistry, 48, 3005, 10.1021/bi802117k
Robison, 2007, Oxidation of calmodulin alters activation and regulation of CaMKII, Biochem. Biophys. Res. Commun., 356, 97, 10.1016/j.bbrc.2007.02.087
Jas, 2002, Free-energy simulations of the oxidation of C-terminal methionines in calmodulin, Proteins Struct. Funct. Genet., 48, 257, 10.1002/prot.10133
Bartlett, 2003, Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase, Biochemistry, 42, 3231, 10.1021/bi026956z
Hanson, 1992, Neuronal Ca2+/Calmodulin-dependent protein kinases, Annu. Rev. Biochem, 61, 559, 10.1146/annurev.bi.61.070192.003015
Li, 2011, The multifunctional Ca2+/calmodulin-dependent kinase II delta (CaMKIIdelta) controls neointima formation after carotid ligation and vascular smooth muscle cell proliferation through cell cycle regulation by p21, J. Biol. Chem., 286, 7990, 10.1074/jbc.M110.163006
Prasad, 2013, Differential control of calcium homeostasis and vascular reactivity by Ca2+/calmodulin-dependent kinase II, Hypertension, 62, 434, 10.1161/HYPERTENSIONAHA.113.01508
Meyer, 1992, Calmodulin trapping by calcium-calmodulin-dependent protein kinase, Science, 256, 1199, 10.1126/science.256.5060.1199
Braun, 1995, The multifunctional calcium/calmodulin-dependent protein kinase: from form to function, Annu. Rev. Physiol., 4, 417, 10.1146/annurev.ph.57.030195.002221
Maier, 2007, Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart, Cardiovasc. Res., 73, 631, 10.1016/j.cardiores.2006.11.005
Erickson, 2008, A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation, Cell, 133, 462, 10.1016/j.cell.2008.02.048
H. Trottier, E.L. Franco, Human papillomavirus and cervical cancer: burden of illness and basis for prevention, Am. J. Manag. Care 12 (2006) S462–S472 (doi:3257) (pii).
Erickson, 2014, Mechanisms of CaMKII activation in the heart, Front. Pharm., 5, 59, 10.3389/fphar.2014.00059
Wagner, 2011, Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload, Circ. Res., 108, 555, 10.1161/CIRCRESAHA.110.221911
Sossalla, 2011, Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current, Basic Res. Cardiol., 106, 263, 10.1007/s00395-010-0136-x
Kim, 2000, Ca2+-calmodulin-dependent protein kinase II-dependent activation of contractility in ferret aorta, J. Physiol., 526, 367, 10.1111/j.1469-7793.2000.00367.x
Z.H. Zhou, S. Ando, D. Furutsuka, M. Ikebe, Characterization of Ca2+/calmodulin–dependent protein kinase II from smooth muscle, Biochem. J. 310 (Pt 2) (1995) 517–525.
Bhattacharjee, 2005, Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants, Curr. Sci., 89, 1113
F. Wach, R. Hein, B.C. Adelmann-Grill, T. Krieg, Inhibition of fibroblast chemotaxis by superoxide dismutase, Eur. J. Cell Biol. 44 (1987) 124–127.
T. Kato, T. Terui, O. Iizawa, H. Tagami, Lucigenin-induced chemiluminescence in human neutrophils in the process of chemotactic migration measured in a modified Boyden chamber, Dermatologica (1989) 113–115.
Haurani, 2008, Nox4 oxidase overexpression specifically decreases endogenous Nox4 mRNA and inhibits angiotensin II-induced adventitial myofibroblast migration, Hypertension, 52, 143, 10.1161/HYPERTENSIONAHA.107.101667
Choi, 2005, Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II, Nature, 435, 347, 10.1038/nature03587
Harfouche, 2005, Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling, FASEB J., 19, 1728, 10.1096/fj.04-3621fje
Weber, 2004, Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration, Circ. Res., 94, 1219, 10.1161/01.RES.0000126848.54740.4A
R.P. Brandes, C. Viedt, K. Nguyen, S. Beer, J. Kreuzer, R. Busse, A. Görlach, Thrombin-induced MCP-1 expression involves activation of the P22phox-containing NADPH oxidase in human vascular smooth muscle cells, Thromb. Haemost. 85 (2001) 1104-1110 (doi:01061104) (pii).
Sundaresan, 1995, Requirement for generation of H2O2 for platelet-derived growth factor signal transduction, Science, 270, 296, 10.1126/science.270.5234.296
ten Freyhaus, 2006, Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation, Cardiovasc. Res., 71, 331, 10.1016/j.cardiores.2006.01.022
Lee, 2009, Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation, Arterioscler. Thromb. Vasc. Biol., 29, 480, 10.1161/ATVBAHA.108.181925
K. Schroeder, A. Keller, R. Busse, R. Brandes, Nox1 mediates basic fibroblast growth factor-induced vascular smooth muscle cell migration, Circulation 112 (2005) (U232–U232).
Cross, 2003, VEGF-receptor signal transduction, Trends Biochem. Sci., 28, 488, 10.1016/S0968-0004(03)00193-2
Lauffenburger, 1996, Cell migration: a physically integrated molecular process, Cell, 84, 359, 10.1016/S0092-8674(00)81280-5
Li, 2005, Mechanotransduction in endothelial cell migration, J. Cell. Biochem., 96, 1110, 10.1002/jcb.20614
Nambiar, 2010, Myosin motor function: the ins and outs of actin-based membrane protrusions, Cell. Mol. Life Sci., 67, 1239, 10.1007/s00018-009-0254-5
Kanchanawong, 2010, Nanoscale architecture of integrin-based cell adhesions, Nature, 468, 580, 10.1038/nature09621
Worth, 2010, Advances in imaging cell–matrix adhesions, J. Cell Sci., 123, 10.1242/jcs.064485
Vicente-Manzanares, 2009, Integrins in cell migration--the actin connection, J. Cell Sci., 122, 199, 10.1242/jcs.018564
Taulet, 2012, Reactive Oxygen species regulate protrusion efficiency by controlling actin dynamics, PLoS One, 7, e41342, 10.1371/journal.pone.0041342
Bailly, 1998, Chemoattractant-induced lamellipod extension, Microsc. Res. Tech., 43, 433, 10.1002/(SICI)1097-0029(19981201)43:5<433::AID-JEMT9>3.0.CO;2-2
Mitchison, 1996, Actin-based cell motility and cell locomotion, Cell, 84, 371, 10.1016/S0092-8674(00)81281-7
Machesky, 1998, Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex, Curr. Biol., 8, 1347, 10.1016/S0960-9822(98)00015-3
Miki, 1998, WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac, EMBO J., 17, 6932, 10.1093/emboj/17.23.6932
Wear, 2000, Actin dynamics: assembly and disassembly of actin networks, Curr. Biol., 10, R891, 10.1016/S0960-9822(00)00845-9
M.-F. Carlier, D. Pantaloni, Control of actin assembly dynamics in cell motility, J. Biol. Chem. 282 (2007) 23005–23009, http://dx.doi.org/10.1074/jbc.R700020200
Falet, 2002, Importance of free actin filament barbed ends for Arp2/3 complex function in platelets and fibroblasts, Proc. Natl. Acad. Sci. USA, 99, 16782, 10.1073/pnas.222652499
Bamburg, 1999, Proteins of the ADF/cofilin family: essential regulators of actin dynamics, Annu. Rev. Cell Dev. Biol., 15, 185, 10.1146/annurev.cellbio.15.1.185
Bamburg, 1999, Putting a new twist on actin: ADF/cofilins modulate actin dynamics, Trends Cell Biol., 9, 364, 10.1016/S0962-8924(99)01619-0
Chen, 2000, Regulating actin-filament dynamics in vivo, Trends Biochem. Sci., 25, 19, 10.1016/S0968-0004(99)01511-X
Maheswaranathan, 2011, Platelet-derived growth factor (PDGF) regulates slingshot phosphatase activity via Nox1-dependent auto-dephosphorylation of serine 834 in vascular smooth muscle cells, J. Biol. Chem., 286, 35430, 10.1074/jbc.M111.268284
Ohashi, 2015, Roles of cofilin in development and its mechanisms of regulation, Dev. Growth Differ., 57, 275, 10.1111/dgd.12213
Yang, 1998, Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization, Nature, 393, 809, 10.1038/31735
Ohashi, 2000, Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop, J. Biol. Chem., 275, 3577, 10.1074/jbc.275.5.3577
Calderwood, 2003, Talin forges the links between integrins and actin, Nat. Cell Biol., 5, 694, 10.1038/ncb0803-694
Brown, 2004, Paxillin: adapting to change, Physiol. Rev., 84, 1315, 10.1152/physrev.00002.2004
Ziegler, 2006, The structure and regulation of vinculin, Trends Cell Biol., 16, 453, 10.1016/j.tcb.2006.07.004
Otey, 1990, An interaction between alpha-actinin and the beta 1 integrin subunit in vitro, J. Cell Biol., 111, 721, 10.1083/jcb.111.2.721
Kumar, 1998, Signaling by integrin receptors, Oncogene, 17, 1365, 10.1038/sj.onc.1202172
L. Mureebe, P.R. Nelson, S. Yamamura, J. Lawitts, K.C. Kent, Activation of pp60csrc is necessary for human vascular smooth muscle cell migration, Surgery 122 (1997) 135–138 (doi: S0039–6060) (97) (90002–7) (pii).
Wozniak, 2004, Focal adhesion regulation of cell behavior, Biochim. Biophys. Acta – Mol. Cell Res., 1692, 103, 10.1016/j.bbamcr.2004.04.007
Chen, 1996, Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase, J. Biol. Chem., 271, 26329, 10.1074/jbc.271.42.26329
Schaller, 1994, Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src, Mol. Cell. Biol., 14, 1680, 10.1128/MCB.14.3.1680
Hamadi, 2005, Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397, J. Cell Sci., 118, 4415, 10.1242/jcs.02565
Webb, 2004, FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly, Nat. Cell Biol., 6, 154, 10.1038/ncb1094
Schlaepfer, 1999, Signaling through focal adhesion kinase, Prog. Biophys. Mol. Biol., 71, 435, 10.1016/S0079-6107(98)00052-2
Yamboliev, 2001, Modulatory role of ERK MAPK-caldesmon pathway in PDGF-stimulated migration of cultured pulmonary artery SMCs, Am. J. Physiol. Cell Physiol., 280, 10.1152/ajpcell.2001.280.6.C1680
Klemke, 1997, Regulation of cell motility by mitogen-activated protein kinase, J. Cell Biol., 137, 481, 10.1083/jcb.137.2.481
Lee, 2012, β-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser83 and microglia chemotaxis, Glia, 60, 1366, 10.1002/glia.22355
Blanc, 2004, Distinct roles of Ca2+, calmodulin, and protein kinase C in H2O2-induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells, Antioxid. Redox Signal, 6, 353, 10.1089/152308604322899422
Tabet, 2005, Mitogen-activated protein kinase activation by hydrogen peroxide is mediated through tyrosine kinase-dependent, protein kinase C-independent pathways in vascular smooth muscle cells: upregulation in spontaneously hypertensive rats, J. Hypertens., 23, 2005, 10.1097/01.hjh.0000185715.60788.1b
King, 2000, p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1), J. Biol. Chem., 275, 41201, 10.1074/jbc.M006553200
Jernigan, 2008, Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia, Am. J. Physiol. Lung Cell. Mol. Physiol., 295, L515, 10.1152/ajplung.00355.2007
Chi, 2010, Prolonged hypoxia increases ROS signaling and RhoA activation in pulmonary artery smooth muscle and endothelial cells, Antioxid. Redox Signal., 12, 603, 10.1089/ars.2009.2861
Fukata, 2001, Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells, Trends Pharmacol. Sci., 22, 32, 10.1016/S0165-6147(00)01596-0
Amano, 1996, Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase), J. Biol. Chem., 271, 20246, 10.1074/jbc.271.34.20246
Wirth, 2003, Inhibition of contraction and myosin light chain phosphorylation in guinea-pig smooth muscle by p21-activated kinase 1, J. Physiol., 549, 489, 10.1113/jphysiol.2002.033167
Chiarugi, 2003, Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction, Trends Biochem. Sci., 28, 509, 10.1016/S0968-0004(03)00174-9
Nathan, 2003, Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling, J. Clin. Invest., 111, 769, 10.1172/JCI200318174
Torres, 2003, Redox signaling and the MAP kinase pathways, Biofactors, 17, 287, 10.1002/biof.5520170128
Heinle, 1984, Vasoconstriction of carotid artery induced by hydroperoxides, Arch. Int. Physiol. Biochim., 92, 267, 10.3109/13813458409071166
Reid, 1993, Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle, J. Appl. Physiol., 75, 1081, 10.1152/jappl.1993.75.3.1081
Oba, 1996, H2O2 modulates twitch tension and increases Po of Ca2+ release channel in frog skeletal muscle, Am. J. Physiol., 271, C810, 10.1152/ajpcell.1996.271.3.C810
Favero, 1995, Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum, J. Biol. Chem., 270, 25557, 10.1074/jbc.270.43.25557
Aghdasi, 1997, Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel, J. Biol. Chem., 272, 3739, 10.1074/jbc.272.6.3739
Nashawati, 1993, Effects produced by infusion of a free radical-generating solution into the diaphragm, Am. Rev. Respir. Dis., 147, 60, 10.1164/ajrccm/147.1.60
Andrade, 1998, Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse, J. Physiol., 509, 565, 10.1111/j.1469-7793.1998.565bn.x
Brooks, 2003, Current topics for teaching skeletal muscle physiology, Adv. Physiol. Educ., 27, 201, 10.1152/advan.00025.2003
Wang, 2001, Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell survival, J. Biol. Chem., 276, 28364, 10.1074/jbc.M102693200
Martín-Garrido, 2009, Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation, Free Radic. Biol. Med., 47, 1362, 10.1016/j.freeradbiomed.2009.07.006
Wenceslau, 2014, Lipoxin A4 mediates aortic contraction via rhoa/rho kinase, endothelial dysfunction and reactive oxygen species, J. Vasc. Res., 51, 407, 10.1159/000371490
Zerpa, 2010, Rho kinase activation and ROS production contributes to the cooling enhanced contraction in cutaneous equine digital veins, J. Appl. Physiol., 109, 11, 10.1152/japplphysiol.01301.2009
Yan, 2008, Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes, Cardiovasc. Res., 77, 432, 10.1093/cvr/cvm047
Song, 2010, L-type Ca2+ channel facilitation mediated by H2O2-induced activation of CaMKII in rat ventricular myocytes, J. Mol. Cell. Cardiol., 48, 773, 10.1016/j.yjmcc.2009.10.020
De Jongh, 1996, Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase, Biochemistry, 35, 10392, 10.1021/bi953023c
Bers, 2002, Cardiac excitation–contraction coupling, Nature, 415, 198, 10.1038/415198a
Wittköpper, 2010, Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging, J. Clin. Invest., 120, 617
Stubbert, 2014, Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide, Hypertension, 64, 1344, 10.1161/HYPERTENSIONAHA.114.04281
U. Raj, L. Shimoda, Oxygen-dependent signaling in pulmonary vascular smooth muscle, Am. J. Physiol. Cell. Mol. Physiol. 283 (2002) L671–L677 (doi: DOI 10.1152/ajplung.00177.2002).
Chiarugi, 2007, Redox signalling in anchorage-dependent cell growth, Cell. Signal., 19, 672, 10.1016/j.cellsig.2006.11.009
Verbon, 2012, The influence of reactive oxygen species on cell cycle progression in mammalian cells, Gene, 511, 1, 10.1016/j.gene.2012.08.038
Boonstra, 2004, Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells, Gene, 337, 1, 10.1016/j.gene.2004.04.032
Griendling, 2000, Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology, Arter. Thromb. Vasc. Biol., 20, 2175, 10.1161/01.ATV.20.10.2175
G.N. Rao, B.C. Berk, Active oxygen species stimulate vascular smooth muscle cell growth and proto–oncogene expression, Circ. Res. 70 (1992) 593–599.
Arnold, 2001, Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1, Proc. Natl. Acad. Sci. USA, 98, 5550, 10.1073/pnas.101505898
Peshavariya, 2009, NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival, Naunyn. Schmiede. Arch. Pharmacol., 380, 193, 10.1007/s00210-009-0413-0
Clempus, 2007, Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype, Arterioscler. Thromb. Vasc. Biol., 27, 42, 10.1161/01.ATV.0000251500.94478.18
Martin-Garrido, 2011, NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor, Free Radic. Biol. Med., 50, 354, 10.1016/j.freeradbiomed.2010.11.007
Takahashi, 2004, Synchronized generation of reactive oxygen species with the cell cycle, Life Sci., 75, 301, 10.1016/j.lfs.2003.12.014
Hsieh, 2014, Detection of reactive oxygen species during the cell cycle under normal culture conditions using a modified fixed-sample staining method, J. Immunoass. Immunochem., 1819, 37
Goswami, 2000, Cell cycle-coupled variation in topoisomerase IIalpha mRNA is regulated by the 3′-untranslated region. Possible role of redox-sensitive protein binding in mRNA accumulation, J. Biol. Chem., 275, 38384, 10.1074/jbc.M005298200
Vartiainen, 2007, Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL, Science, 316, 1749, 10.1126/science.1141084
Miralles, 2003, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, 113, 329, 10.1016/S0092-8674(03)00278-2
Blaker, 2009, PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression, Arterioscler. Thromb. Vasc. Biol., 29, 2153, 10.1161/ATVBAHA.109.197285
Iyer, 2006, Serum response factor MADS box serine-162 phosphorylation switches proliferation and myogenic gene programs, Proc. Natl. Acad. Sci. USA, 103, 4516, 10.1073/pnas.0505338103
Parmacek, 2007, Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation, Circ. Res., 100, 633, 10.1161/01.RES.0000259563.61091.e8
Kanellos, 2016, Cellular functions of the ADF/cofilin family at a glance, J. Cell Sci., 129, 3211, 10.1242/jcs.187849
Ramanathan, 2015, Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement, Nat. Cell Biol., 17, 148, 10.1038/ncb3098
Lancaster, 2013, Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation, Dev. Cell., 25, 270, 10.1016/j.devcel.2013.03.014
Rosenblatt, 2004, Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly, Cell, 117, 361, 10.1016/S0092-8674(04)00341-1
Yüce, 2005, An ECT2-centralspindlin complex regulates the localization and function of RhoA, J. Cell Biol., 170, 571, 10.1083/jcb.200501097
Li, 2010, Cytokinesis and cancer: polo loves ROCK’n’ Rho(A), J. Genet. Genom., 37, 159, 10.1016/S1673-8527(09)60034-5
D.L. Clement, M.L. De Buyzere, D.A. Duprez, Hypertension in peripheral arterial disease, Curr. Pharm. Des. 10 (2004) 3615–3620.
Madamanchi, 2005, Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes, J. Thromb. Haemost., 3, 254, 10.1111/j.1538-7836.2004.01085.x
Hulsmans, 2010, The vicious circle between oxidative stress and inflammation in atherosclerosis, J. Cell. Mol. Med., 14, 70, 10.1111/j.1582-4934.2009.00978.x
Drummond, 2011, Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets, Nat. Rev. Drug Discov., 10, 453, 10.1038/nrd3403
N.R. Madamanchi, A. Vendrov, M.S. Runge, Oxidative stress and vascular disease, Arterioscler. Thromb. Vasc. Biol. 25 (2004).
Li, 2006, Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats, J. Am. Coll. Cardiol., 47, 2536, 10.1016/j.jacc.2006.01.071
Matsuno, 2005, Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice, Circulation, 112, 2677, 10.1161/CIRCULATIONAHA.105.573709
Fukui, 1997, p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats, Circ. Res., 80, 45, 10.1161/01.RES.80.1.45
Warnholtz, 1999, Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system, Circulation, 99, 2027, 10.1161/01.CIR.99.15.2027
Sheehan, 2011, Role for Nox1 NADPH oxidase in atherosclerosis, Atherosclerosis, 216, 321, 10.1016/j.atherosclerosis.2011.02.028
Judkins, 2010, Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice, Am. J. Physiol. Heart Circ. Physiol., 298, H24, 10.1152/ajpheart.00799.2009
Lozhkin, 2016, NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis, J. Mol. Cell. Cardiol., 102, 10, 10.1016/j.yjmcc.2016.12.004
Wang, 2004, Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells, J. Mol. Cell. Cardiol., 36, 49, 10.1016/j.yjmcc.2003.09.014
Kim, 2013, Eupatolide inhibits PDGF-induced proliferation and migration of aortic smooth muscle cells through ROS-dependent heme oxygenase-1 induction, Phyther. Res., 27, 1700, 10.1002/ptr.4924
Xi, 1999, Central role of the MAPK pathway in ang II-mediated DNA synthesis and migration in rat vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 19, 73, 10.1161/01.ATV.19.1.73
Zhang, 2002, Different alpha-adrenoceptors mediate migration of vascular smooth muscle cells and adventitial fibroblasts in vitro, Am. J. Physiol. Heart Circ. Physiol., 282, H2364, 10.1152/ajpheart.00858.2001
Murdoch, 2011, Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction, Basic Res. Cardiol., 106, 527, 10.1007/s00395-011-0179-7
Intengan, 2001, Vascular remodeling in hypertension, Hypertension, 38, 581, 10.1161/hy09t1.096249
Feihl, 2008, Hypertension and microvascular remodelling, Cardiovasc. Res., 78, 10.1093/cvr/cvn022
Cipolla, 2002, Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior, FASEB J., 16, 72, 10.1096/cj.01-0104hyp
Flavahan, 2005, Imaging remodeling of the actin cytoskeleton in vascular smooth muscle cells after mechanosensitive arteriolar constriction, Am. J. Physiol. Heart Circ. Physiol., 288, H660, 10.1152/ajpheart.00608.2004
Staiculescu, 2013, Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling, Cardiovasc. Res., 98, 428, 10.1093/cvr/cvt034
Nakamura, 2000, Actin filament disruption inhibits L-type Ca(2+) channel current in cultured vascular smooth muscle cells, Am. J. Physiol. Cell Physiol., 279, 10.1152/ajpcell.2000.279.2.C480
Samain, 1999, ANG II-induced Ca2+ increase in smooth muscle cells from SHR is regulated by actin and microtubule networks, Am. J. Physiol. - Hear. Circ. Physiol., 277, H834, 10.1152/ajpheart.1999.277.2.H834
El-Yazbi, 2015, PKC-mediated cerebral vasoconstriction: role of myosin light chain phosphorylation versus actin cytoskeleton reorganization, Biochem. Pharmacol., 95, 263, 10.1016/j.bcp.2015.04.011
Itoh, 2002, Importance of NAD(P)H oxidase-mediated oxidative stress and contractile type smooth muscle myosin heavy chain SM2 at the early stage of atherosclerosis, Circulation, 105, 2288, 10.1161/01.CIR.0000015607.33345.1F
de la Cuesta, 2013, Deregulation of smooth muscle cell cytoskeleton within the human atherosclerotic coronary media layer, J. Proteom., 82, 155, 10.1016/j.jprot.2013.01.032
Touré, 2012, Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways, Circ. Res., 110, 1279, 10.1161/CIRCRESAHA.111.262519
Wang, 2012, Manganese superoxide dismutase inhibits neointima formation through attenuation of migration and proliferation of vascular smooth muscle cells, Free Radic. Biol. Med., 52, 173, 10.1016/j.freeradbiomed.2011.10.442
Colangelo, 1998, Alterations in endothelial F-actin microfilaments in rabbit aorta in hypercholesterolemia, Arterioscler. Thromb. Vasc. Biol., 18, 52, 10.1161/01.ATV.18.1.52
Ai, 2008, Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration, Am. J. Physiol. Cell Physiol., 294, C1576, 10.1152/ajpcell.00518.2007
Liu, 2008, Endothelial cytoskeletal elements are critical for flow-mediated dilation in human coronary arterioles, Med. Biol. Eng. Comput., 46, 469, 10.1007/s11517-008-0331-1
Weber, 2001, Enhanced relaxation to the Rho-kinase inhibitor Y-27632 in mesenteric arteries from mineralocorticoid hypertensive rats, Pharmacology, 63, 129, 10.1159/000056123
Asano, 2003, Comparison of inhibitory effects of Y-27632, a Rho kinase inhibitor, in strips of small and large mesenteric arteries from spontaneously hypertensive and normotensive Wistar-Kyoto rats, Hypertens. Res., 26, 97, 10.1291/hypres.26.97
Masumoto, 2001, Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans, Hypertension, 38, 1307, 10.1161/hy1201.096541
Chrissobolis, 2001, Evidence that Rho-kinase activity contributes to cerebral vascular tone in vivo and is enhanced during chronic hypertension: comparison with protein kinase C, Circ. Res., 88, 774, 10.1161/hh0801.090441
Chitaley, 2001, RhoA/rho-kinase, vascular changes, and hypertension, Curr. Hypertens. Rep., 3, 139, 10.1007/s11906-001-0028-4
Seko, 2003, Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle, Circ. Res., 92, 411, 10.1161/01.RES.0000059987.90200.44
Uehata, 1997, Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension, Nature, 389, 990, 10.1038/40187
Mukai, 2001, Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension, FASEB J., 15, 1062, 10.1096/fj.00-0735fje
Wang, 2008, Deficiency of ROCK1 in bone marrow-derived cells protects against atherosclerosis in LDLR-/- mice, FASEB J., 22, 3561, 10.1096/fj.08-108829
Shimokawa, 2001, Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo, Cardiovasc. Res., 51, 169, 10.1016/S0008-6363(01)00291-7
Mallat, 2003, Rho-associated rotein kinase contributes to early atherosclerotic lesion formation in mice, Circ. Res., 93, 884, 10.1161/01.RES.0000099062.55042.9A
Eto, 2000, Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs, Am. J. Physiol. Heart Circ. Physiol., 278, 10.1152/ajpheart.2000.278.6.H1744
Kataoka, 2002, Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats, Hypertension, 39, 245, 10.1161/hy0202.103271
Stocker, 2004, Role of oxidative stress modifications in atherosclerosis, Physiol. Rev., 84, 1381, 10.1152/physrev.00047.2003
Shafique, 2013, Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK, Aging, 5, 515, 10.18632/aging.100569
Klomsiri, 2010, Use of dimedone-based chemical probes for sulfenic acid detection, thiol redox transitions cell signaling, Part A, 473, 77
Kris-Etherton, 2002, Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease, Circulation, 106, 2747, 10.1161/01.CIR.0000038493.65177.94
Berndt, 2014, Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells, Redox Biol., 2, 673, 10.1016/j.redox.2014.04.012
Fedorova, 2010, Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress, J. Proteome Res., 9, 1598, 10.1021/pr901099e
Hamnell-Pamment, 2005, Determination of site-specificity of S-glutathionylated cellular proteins, Biochem. Biophys. Res. Commun., 332, 362, 10.1016/j.bbrc.2005.04.130
Su, 2013, Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry, Free Radic. Biol. Med., 57, 68, 10.1016/j.freeradbiomed.2012.12.010
Chen, 2008, Acute hypoxia enhances proteins' S-nitrosylation in endothelial cells, Biochem. Biophys. Res. Commun., 377, 1274, 10.1016/j.bbrc.2008.10.144
Shartava, 1995, A posttranslational modification of β-actin contributes to the slow dissociation of the spectrin-protein 4.1-actin complex of irreversibly sickled cells, J. Cell Biol., 128, 805, 10.1083/jcb.128.5.805
Dalle-Donne, 2003, Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule, Free Radic. Biol. Med., 34, 23, 10.1016/S0891-5849(02)01182-6
Pizarro, 2009, Impact of actin glutathionylation on the actomyosin-S1 ATPase, Biochemistry, 48, 7533, 10.1021/bi900669m
Dalle-Donne, 2000, S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle, J. Muscle Res. Cell Motil., 21, 171, 10.1023/A:1005671319604
Tsapara, 1999, Expression and characterization of Cys374 mutated human β-actin in two different mammalian cell lines: impaired microfilament organization and stability, FEBS Lett., 455, 117, 10.1016/S0014-5793(99)00848-0
Dalle-Donne, 2002, Methionine oxidation as a major cause of the functional impairment of oxidized actin, Free Radic. Biol. Med., 32, 927, 10.1016/S0891-5849(02)00799-2
Lusty, 1969, Characterization of sulfhydryl groups of actin, Biochemistry, 8, 2933, 10.1021/bi00835a036