Syntheses, structures and properties of two dinuclear mercury(II) iodide compounds containing tetradentate tripodal amine/pentadentate N-donor Schiff base: Control of molecular and crystalline architectures by varying ligand matrices
Tóm tắt
Two dinuclear mercury(II) iodide complexes of the types [(L1)Hg(μ-I)HgI3] (1) and [Hg2(L2)(I)4] ⋅H
2O (2) [L1 =tris(2-aminoethyl)amine and L2 = N,N′-(bis-(pyridin-2-yl)benzylidene)diethylenetriamine] have been synthesized and characterized using microanalytical, spectroscopic, thermal and other physicochemical results. Structures of both the compounds are solved by X-ray diffraction measurements. Structural analyses show that one mercury (II) centre in 1 adopts a distorted tetrahedral geometry with an HgI4 chromophore surrounded by four iodides, while the other has a distorted trigonal bipyramidal environment with an HgN4I chromophore bound by four N atoms of L1 and one bridging iodide. Pentadentate Schiff base (L2) in 2 shows unusual binucleating bis(bidentate) behaviour to bind two different mercury(II) centres—Hg1 with an HgN3
I
2 chromophore in a distorted square pyramidal geometry and Hg2 with an HgN2
I
2 chromophore in a tetrahedral environment. Weak intermolecular N–H ⋅⋅⋅I hydrogen bonds in 1 and cooperative C–H ⋅⋅⋅π and π⋅⋅⋅π interactions in 2 promote dimensionalities. The Schiff base complex, 2, shows intraligand (π– π*) fluorescence in DMF solution at room temperature, whereas compound 1 containing tripodal amine is fluorescent-inactive.
Tài liệu tham khảo
Comba P, Hambley T W and Martin B 2009 Molecular modeling of inorganic compounds, Wienheim: Wiley-VCH, third ed., pp 80
Lalena J N and Cleary D A 2010 Principles of inorganic material design, Hoboken, New Jersey: John Wiley & Sons, Inc., second ed., pp 501
(a) Morsali A and Masoomi M Y 2009 Coord. Chem. Rev. 253 1882; (b) Bharara M S, Parkin S and Atwood D A 2006 Inorg. Chem. 45 2112
(a) Wei K J, Xie Y S, Ni J, Zhang M and Liu Q L 2006 Cryst. Growth Des. 6 1341; (b) Mahmoudi G, Morsali A, Hunter A D and Zeller M 2007 Cryst. Eng. Comm. 9 704
(a) Hu C, Kalf I and Englert U 2007 Cryst. Eng. Comm. 9 603; (b) Wang X F, Lv Y, Okamura T A, Kawaguchi H, Wu G, Sun W Y and Ueyama N 2007 Cryst. Growth Des. 7 1125
(a) Mahmoudi G and Morsali A 2008 Cryst. Growth Des. 8 391; (b) Mahmoudi G and Morsali A 2008 Polyhedron 27 1070
(a) Zeng K-J, Xie Y.-S, Ni J, Zhang M and Liu Q -L 2006 Cryst. Growth Des. 6 1341; (b) Yang J, Wu B, Zhuge F, Liang J, Jia C, Wang Y Y, Tang N, Yang X J and Shi Q Z 2010 Cryst. Growth Des. 10 2331
(a) Perry J J, Perman J A and Zaworotko M J 2009 Chem. Soc. Rev. 38 1400; (b) Owen T and Butler A 2011 Coord. Chem. Rev. 255 678
Seidel S R and Stang P J 2002 Acc. Chem. Res. 35 972; (b) Steel P J 2005 Acc. Chem. Res. 38 243
Jeffrey G A, 1997 An introduction to hydrogen bonding, Oxford: Oxford University Press, pp 123
Tiekink E R T and Zukerman-Schpector J 2012 The importance of pi-interactions in crystal engineering: frontiers in crystal engineering, Chichester, UK: John Wiley & Sons, first ed., pp 41
Nishio M, Hirota M and Umezawa Y 1998 The CH/π interaction, New York: Wiley-VCH
(a) Mercier N, Poiroux S, Riou A and Batail P 2004 Inorg. Chem. 43 8361; (b) Mahmoudi G, Morsali A, Hunter A D and Zeller M 2007 Cryst. Eng. Comm. 9 704
Satapathi S, Roy S, Bhar K, Ghosh R, Rao A S and Ghosh B K 2011 Struct. Chem. 22 605
(a) Chakraborty J, Roy P, Mayer-Figge H, Sheldrick W S and Banerjee P 2007 Polyhedron 26 3609; (b) Boča R, Gembický M, Herchel R, Haase W, Jäger L, Wagner C, Ehrenberg H and Fuess H 2003 Inorg. Chem. 42 6965
Vigato P A and Tamburini S 2008 Coord. Chem. Rev. 252 1871
(a) Karmakar T K, Chandra S K, Ribas J, Mostafa G, Lu T H and Ghosh B K 2002 Chem. Commun. 2364; (b) Bhar K, Khan S, Costa J S, Ribas J, Roubeau O, Mitra P and Ghosh B K 2012 Angew. Chem. Int. Ed. 51 2142
Englert U 2010 Coord. Chem. Rev. 254 537
(a) Sabounchei S J, Jodaian V and Khavasi H R 2007 Polyhedron 26 2845; (b) Wang X-F, Lv Y, Okamura T, Kawaguchi H , Wu G, Sun W -Y and Ueyama N, 2007 Cryst. Growth Des. 7 1125
Chattopadhyay S, Bhar K, Das S, Khan S, Mitra P, Ribas J and Ghosh B K 2012 Polyhedron 39 48
(a) Satapathi S, Chattopadhyay S, Roy S, Bhar K, Mitra P and Ghosh B K 2012 J. Mol. Struct. 1030 138; (b) Satapathi S, Choubey S, Das S, Bhar K, Mitra P, Ghosh R and Ghosh B K 2012 J. Chem. Crystallogr. 42 1060
Sarkar B N, Bhar K, Chattopadhyay S, Das S, Mitra P and Ghosh B.K 2010 J. Mol. Struct. 963 35
Sheldrick G M SAINT, V4: 1996 Software reference manual siemens analytical X-ray systems, Madison, WI, USA
Sheldrick G M SADABS 1996 Program for empirical absorption correction of area detector data, Germany: University of Göttingen
Sheldrick G M 2008 Acta Crystallogr. A64 112
Spek A L 2009 Acta Crystallogr. D65 148
Farrugia L J, ORTEP-3 1997 J. Appl. Crystallogr. 30 565
Geary W J 1971 Coord. Chem. Rev. 7 81
Nakamoto K 2009 Infrared and Raman spectra of inorganic and coordination compounds, Part B, Hoboken, New Jersey: John Wiley & Sons, sixth ed
Lever A B P 1984 Inorganic electronic spectroscopy, New York: Elsevier, second ed., pp 182
Zhai Q -G, Wu X -Y, Chen S -M, Lu C –Z and Yang W -B 2006 Cryst. Growth Des. 6 2126
Lakowicz J R 2006 Principles of fluorescence spectroscopy, USA: Springer, third ed., pp 292
(a) Wei K J, Xie Y S, Ni J, Zhang M and Liu Q L 2006 Cryst. Growth Des. 6 1341; (b) Zeng F, Ni J, Wang Q, Ding Y, Weng Ng S, Zhu W and Xie Y 2010 Cryst. Growth Des. 34510 1611
Addision A W, Rao T N, Reedijik J, Rijn J V and Verschoor G C 1984 J. Chem. Soc. Dalton Trans. 1349
Etter M C 1991 J. Phys. Chem. 95 4601