Syntheses, structures and properties of two dinuclear mercury(II) iodide compounds containing tetradentate tripodal amine/pentadentate N-donor Schiff base: Control of molecular and crystalline architectures by varying ligand matrices

SUBHASIS ROY1, SOUMI CHATTOPADHYAY1, SOMNATH CHOUBEY1, KISHALAY BHAR1, PARTHA MITRA2, BARINDRA KUMAR GHOSH1
1Department of Chemistry, The University of Burdwan, Burdwan, India
2Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India

Tóm tắt

Two dinuclear mercury(II) iodide complexes of the types [(L1)Hg(μ-I)HgI3] (1) and [Hg2(L2)(I)4] ⋅H 2O (2) [L1 =tris(2-aminoethyl)amine and L2 = N,N′-(bis-(pyridin-2-yl)benzylidene)diethylenetriamine] have been synthesized and characterized using microanalytical, spectroscopic, thermal and other physicochemical results. Structures of both the compounds are solved by X-ray diffraction measurements. Structural analyses show that one mercury (II) centre in 1 adopts a distorted tetrahedral geometry with an HgI4 chromophore surrounded by four iodides, while the other has a distorted trigonal bipyramidal environment with an HgN4I chromophore bound by four N atoms of L1 and one bridging iodide. Pentadentate Schiff base (L2) in 2 shows unusual binucleating bis(bidentate) behaviour to bind two different mercury(II) centres—Hg1 with an HgN3 I 2 chromophore in a distorted square pyramidal geometry and Hg2 with an HgN2 I 2 chromophore in a tetrahedral environment. Weak intermolecular N–H ⋅⋅⋅I hydrogen bonds in 1 and cooperative C–H ⋅⋅⋅π and π⋅⋅⋅π interactions in 2 promote dimensionalities. The Schiff base complex, 2, shows intraligand (π– π*) fluorescence in DMF solution at room temperature, whereas compound 1 containing tripodal amine is fluorescent-inactive.

Tài liệu tham khảo

Comba P, Hambley T W and Martin B 2009 Molecular modeling of inorganic compounds, Wienheim: Wiley-VCH, third ed., pp 80 Lalena J N and Cleary D A 2010 Principles of inorganic material design, Hoboken, New Jersey: John Wiley & Sons, Inc., second ed., pp 501 (a) Morsali A and Masoomi M Y 2009 Coord. Chem. Rev. 253 1882; (b) Bharara M S, Parkin S and Atwood D A 2006 Inorg. Chem. 45 2112 (a) Wei K J, Xie Y S, Ni J, Zhang M and Liu Q L 2006 Cryst. Growth Des. 6 1341; (b) Mahmoudi G, Morsali A, Hunter A D and Zeller M 2007 Cryst. Eng. Comm. 9 704 (a) Hu C, Kalf I and Englert U 2007 Cryst. Eng. Comm. 9 603; (b) Wang X F, Lv Y, Okamura T A, Kawaguchi H, Wu G, Sun W Y and Ueyama N 2007 Cryst. Growth Des. 7 1125 (a) Mahmoudi G and Morsali A 2008 Cryst. Growth Des. 8 391; (b) Mahmoudi G and Morsali A 2008 Polyhedron 27 1070 (a) Zeng K-J, Xie Y.-S, Ni J, Zhang M and Liu Q -L 2006 Cryst. Growth Des. 6 1341; (b) Yang J, Wu B, Zhuge F, Liang J, Jia C, Wang Y Y, Tang N, Yang X J and Shi Q Z 2010 Cryst. Growth Des. 10 2331 (a) Perry J J, Perman J A and Zaworotko M J 2009 Chem. Soc. Rev. 38 1400; (b) Owen T and Butler A 2011 Coord. Chem. Rev. 255 678 Seidel S R and Stang P J 2002 Acc. Chem. Res. 35 972; (b) Steel P J 2005 Acc. Chem. Res. 38 243 Jeffrey G A, 1997 An introduction to hydrogen bonding, Oxford: Oxford University Press, pp 123 Tiekink E R T and Zukerman-Schpector J 2012 The importance of pi-interactions in crystal engineering: frontiers in crystal engineering, Chichester, UK: John Wiley & Sons, first ed., pp 41 Nishio M, Hirota M and Umezawa Y 1998 The CH/π interaction, New York: Wiley-VCH (a) Mercier N, Poiroux S, Riou A and Batail P 2004 Inorg. Chem. 43 8361; (b) Mahmoudi G, Morsali A, Hunter A D and Zeller M 2007 Cryst. Eng. Comm. 9 704 Satapathi S, Roy S, Bhar K, Ghosh R, Rao A S and Ghosh B K 2011 Struct. Chem. 22 605 (a) Chakraborty J, Roy P, Mayer-Figge H, Sheldrick W S and Banerjee P 2007 Polyhedron 26 3609; (b) Boča R, Gembický M, Herchel R, Haase W, Jäger L, Wagner C, Ehrenberg H and Fuess H 2003 Inorg. Chem. 42 6965 Vigato P A and Tamburini S 2008 Coord. Chem. Rev. 252 1871 (a) Karmakar T K, Chandra S K, Ribas J, Mostafa G, Lu T H and Ghosh B K 2002 Chem. Commun. 2364; (b) Bhar K, Khan S, Costa J S, Ribas J, Roubeau O, Mitra P and Ghosh B K 2012 Angew. Chem. Int. Ed. 51 2142 Englert U 2010 Coord. Chem. Rev. 254 537 (a) Sabounchei S J, Jodaian V and Khavasi H R 2007 Polyhedron 26 2845; (b) Wang X-F, Lv Y, Okamura T, Kawaguchi H , Wu G, Sun W -Y and Ueyama N, 2007 Cryst. Growth Des. 7 1125 Chattopadhyay S, Bhar K, Das S, Khan S, Mitra P, Ribas J and Ghosh B K 2012 Polyhedron 39 48 (a) Satapathi S, Chattopadhyay S, Roy S, Bhar K, Mitra P and Ghosh B K 2012 J. Mol. Struct. 1030 138; (b) Satapathi S, Choubey S, Das S, Bhar K, Mitra P, Ghosh R and Ghosh B K 2012 J. Chem. Crystallogr. 42 1060 Sarkar B N, Bhar K, Chattopadhyay S, Das S, Mitra P and Ghosh B.K 2010 J. Mol. Struct. 963 35 Sheldrick G M SAINT, V4: 1996 Software reference manual siemens analytical X-ray systems, Madison, WI, USA Sheldrick G M SADABS 1996 Program for empirical absorption correction of area detector data, Germany: University of Göttingen Sheldrick G M 2008 Acta Crystallogr. A64 112 Spek A L 2009 Acta Crystallogr. D65 148 Farrugia L J, ORTEP-3 1997 J. Appl. Crystallogr. 30 565 Geary W J 1971 Coord. Chem. Rev. 7 81 Nakamoto K 2009 Infrared and Raman spectra of inorganic and coordination compounds, Part B, Hoboken, New Jersey: John Wiley & Sons, sixth ed Lever A B P 1984 Inorganic electronic spectroscopy, New York: Elsevier, second ed., pp 182 Zhai Q -G, Wu X -Y, Chen S -M, Lu C –Z and Yang W -B 2006 Cryst. Growth Des. 6 2126 Lakowicz J R 2006 Principles of fluorescence spectroscopy, USA: Springer, third ed., pp 292 (a) Wei K J, Xie Y S, Ni J, Zhang M and Liu Q L 2006 Cryst. Growth Des. 6 1341; (b) Zeng F, Ni J, Wang Q, Ding Y, Weng Ng S, Zhu W and Xie Y 2010 Cryst. Growth Des. 34510 1611 Addision A W, Rao T N, Reedijik J, Rijn J V and Verschoor G C 1984 J. Chem. Soc. Dalton Trans. 1349 Etter M C 1991 J. Phys. Chem. 95 4601