Enhanced mechanical properties of poly (ε-caprolactone) nanofibers produced by the addition of non-stoichiometric inclusion complexes of poly (ε-caprolactone) and α-cyclodextrin
Tài liệu tham khảo
He, 2010, Apparatus for preparing electrospun nanofibers: a comparative review, Mater. Sci. Tech., 26, 1275, 10.1179/026708310X12798718274430
Zhang, 2009, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis, Polymer, 50, 4189, 10.1016/j.polymer.2009.06.062
Zhu, 2011, Ionic liquid assisted electrospinning of quantum dots/elastomer composite nanofibers, Polymer, 1954, 10.1016/j.polymer.2011.02.051
Zhu, 2011, Magnetic nanocomposite fibers-electrospinning stabilization and carbonization, Polymer, 51, 2947, 10.1016/j.polymer.2011.04.034
Homayoni, 2009, Electrospinning of chitosan nanofibers: processing optimization, Carbohydr. Polym., 77, 656, 10.1016/j.carbpol.2009.02.008
Kayaci, 2012, Electrospun zein nanofibers incorporating cyclodextrins, Carbohydr. Polym., 90, 558, 10.1016/j.carbpol.2012.05.078
Matthew, 2002, Electrospinning of collagen nanofibers, Biomacromolecules, 3, 232, 10.1021/bm015533u
Min, 2004, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials, 25, 1289, 10.1016/j.biomaterials.2003.08.045
Uyar, 2008, Electrospinning of cyclodextrin-pseudopolyrotaxane nanofibers, Angew. Chem. Int., 47, 9108, 10.1002/anie.200803352
Sarioglu, 2013, Efficient ammonium removal from aquatic environments by acinetobacter calcoaceticus STB1 immobilized on electrospun cellulose acetate nanofibrous web, Green. Chem., 15, 2566, 10.1039/c3gc40885j
Li, 2003, Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds, J. Biomed. Mater. Res. A, 67A, 1105, 10.1002/jbm.a.10101
Patra, 2009, Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning, J. Mater. Sci., 44, 47, 10.1007/s10853-008-3050-y
Boland, 2001, Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid), J. Macromol. Sci. Part A Pure Appl. Chem., A38, 1231, 10.1081/MA-100108380
Chung, 2009, Nanofibrous scaffolds electrospun from elastomeric biodegradable poly(l-lactide-co–caprolactone) copolymer, Biomed. Mater., 4, 1, 10.1088/1748-6041/4/1/015019
Bini, 2004, Electrospun poly (L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration, Nanotechnology, 5, 1459, 10.1088/0957-4484/15/11/014
Mahoney, 2012, Nanofibrous structure of chitosan for biomedical applications, J. Nanomed. Biother. Discov., 2, 102
Xie, 2013, Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties, Acta Biomater., 9, 5698, 10.1016/j.actbio.2012.10.042
Okhawa, 2004, Electrospinning of chitosan, Macromol. Rapid Commun., 25, 1600, 10.1002/marc.200400253
Steyaert, 2012, Blend electrospinning of chitosan/polycaprolacton nanofibres, 75
Tyagi, 2009, Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite, J. Nanosci. Nanotechnol., 9, 4839, 10.1166/jnn.2009.1588
Powell, 2009, Engineered human skin fabricated using electrospun collagen– PCL blends: morphogenesis and mechanical properties, Tissue Eng. Part A, 15, 2177, 10.1089/ten.tea.2008.0473
Saeed, 2006, Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite, Polymer, 47, 8019, 10.1016/j.polymer.2006.09.012
Kolbuk, 2013, Structure and morphology of electrospun polycaprolactone/gelatine nanofibres, Eur. Polym. J., 49, 2052, 10.1016/j.eurpolymj.2013.04.036
Blaise, 2008, Ecotoxicity of selected nano-materials to aquatic organisms, Environ. Toxicol., 23, 591, 10.1002/tox.20402
Saenger, 1980, Cyclodextrin inclusion complexes: host-guest interactions and hydrogen- bonding networks, Angew. Chem. Int. Engl., 19, 344, 10.1002/anie.198003441
Martin Del Valle, 2004, Cyclodextrins and Ttheir uses: a review, Process. Biochem., 39, 1033, 10.1016/S0032-9592(03)00258-9
Harada, 1990, Complex formation between poly (ethylene glycol) and α- cyclodextrin, Macromolecules, 23, 2821, 10.1021/ma00212a039
Rusa, 2003, Competitive formation of polymer−cyclodextrin inclusion compounds, Macromolecules, 36, 2742, 10.1021/ma021755o
Lu, 2001, Dynamics of isolated polycaprolactone chains in their inclusion complexes with cyclodextrins, Macromolecules, 34, 3276, 10.1021/ma001820z
Rusa, 2001, Polymer−cyclodextrin inclusion Ccompounds: toward new aspects of their inclusion mechanism, Macromolecules, 34, 1318, 10.1021/ma001868c
Huang, 1999, Inclusion compounds formed between cyclodextrins and nylon 6, Polymer, 40, 3211, 10.1016/S0032-3861(98)00529-1
Williamson, 2012, Constrained polymer chain behavior observed in their non- stoichiometric cyclodextrin inclusion complexes, J. Incl. Phenom. Macrocycl. Chem., 72, 71, 10.1007/s10847-011-9940-7
Tonelli, 2014, Non-stoichiometric polymer-cyclodextrin inclusion compounds: constraints placed on un-included chain portions tethered at both ends and their relation to polymer brushes, Polymers, 6, 2166, 10.3390/polym6082166
Dong, 2009, Crystallization behavior and mechanical properties of poly (ε-caprolactone)/cyclodextrin biodegradable composites, J. Appl. Polm. Sci., 112, 2351, 10.1002/app.29628
Luo, 2008, Novel biodegradable shape memory material based on partial inclusion complex formation between α-cyclodextrin and poly(ε- caprolactone), Biomacromolecules, 9, 2573, 10.1021/bm8004726
Liu, 2008, Characterization of the stable and metastable poly(ethylene oxide)–urea complexes in electrospun fibers, J. Polym. Sci. Part B Polym. Phys., 46, 1903, 10.1002/polb.21523
Liu, 2010, Structure and phase behavior of the poly (ethylene oxide)- thiourea complex prepared by electrospinning, J. Phys. Chem. B, 114, 2373, 10.1021/jp9103867
Liu, 2009, Stability and phase behavior of the poly (ethylene oxide)–urea complexes prepared by electrospinning, Polymer, 50, 2601, 10.1016/j.polymer.2009.03.050
Zhan, 2012, Multifunctional aliphatic polyester nanofibers for tissue engineering, Biomatter, 2, 202, 10.4161/biom.22723
Narayanan, 2014, Poly(ε-caprolactone) nanowebs functionalized with α- and γ-cyclodextrins, Biomacromolecules, 15, 4122, 10.1021/bm501158w
Rezwan, 2006, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27, 3413, 10.1016/j.biomaterials.2006.01.039
Amini, 2012, Bone tissue engineering: recent advances and challenges, Crit. Rev. Biomed. Eng., 40, 363, 10.1615/CritRevBiomedEng.v40.i5.10
Mikael, 2011, Functionalized carbon nanotube composite scaffolds for bone tissue engineering: prospects and progress, Biomater. Tissue Eng., 1, 76, 10.1166/jbt.2011.1011
Ramay, 2004, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Biomaterials, 25, 5171, 10.1016/j.biomaterials.2003.12.023
Fujihara, 2005, Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers, Biomaterials, 26, 4139, 10.1016/j.biomaterials.2004.09.014
Narayanan, 2015, Efficient wound odor removal by β-cyclodextrin functionalized poly (ε-caprolactone) nanofibers, J. Appl. Polym. Sci., 10.1002/app.42782
Wei, 2003, Melting and crystallization behaviors of biodegradable polymers enzymatically coalesced from their cyclodextrin inclusion complexes, Biomacromolecules, 4, 783, 10.1021/bm034078u
Williamson, 2011, Physical properties of poly (ɛ-caprolactone) coalesced from its α-cyclodextrin inclusion compound, Polymer, 52, 4517, 10.1016/j.polymer.2011.07.043
Mohan, 2009, Constrained/directed crystallization of nylon-6. I. nonstoichiometric inclusion compounds formed with cyclodextrins, Macromolecules, 42, 8983, 10.1021/ma901599c
Dong, 2005, Nucleation mechanism of α-cyclodextrin- enhanced crystallization of some semicrystalline aliphatic polymers, Macromolecules, 38, 7736, 10.1021/ma050826r
Narayanan, 2015
Vedula, 2007, Reorganization of poly (ethylene terephthalate) structures and conformations to alter properties, J. Polym. Sci. Part B Polym. Phys., 45, 735, 10.1002/polb.21098
Vogel, 2006, Melt spinning of poly (3- hydroxybutyrate) fibers for tissue engineering using α-cyclodextrin/polymer inclusion complexes as the nucleation agent, Macromol. Biosci., 6, 730, 10.1002/mabi.200600116